
www.manaraa.com

Quan Chen
Minyi Guo

Task Scheduling
for Multi-core
and Parallel
Architectures
Challenges, Solutions and Perspectives

www.manaraa.com

Task Scheduling for Multi-core and Parallel
Architectures

www.manaraa.com

Quan Chen • Minyi Guo

Task Scheduling
for Multi-core and Parallel
Architectures
Challenges, Solutions and Perspectives

123

www.manaraa.com

Quan Chen
Shanghai Jiao Tong University
Shanghai
China

Minyi Guo
Shanghai Jiao Tong University
Shanghai
China

ISBN 978-981-10-6237-7 ISBN 978-981-10-6238-4 (eBook)
https://doi.org/10.1007/978-981-10-6238-4

Library of Congress Control Number: 2017956334

© Springer Nature Singapore Pte Ltd. 2017
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer Nature Singapore Pte Ltd.
The registered company address is: 152 Beach Road, #21-01/04GatewayEast, Singapore 189721, Singapore

www.manaraa.com

Preface

Computers play an indispensable role in almost all scientific fields and disciplines
such as biomedicine, physical simulations, computational chemistry, and astro-
nautics. In order to fulfill the urgent requirement for high computational capacity
(for example, huge amount of computational capacity is required in big data
analysis), technologies of parallel computing and resource management increas-
ingly grow. Nowadays, multi-core processors have become mainstream in both
research and real-world settings, from warehouse-scale datacenter, personal desk-
tops, laptops, to smartphones, since they demonstrate the superior performance per
watt and the larger computational capacity compared to the traditional single-core
processors. For these widely used parallel systems, a key problem is how to
schedule the tasks to efficiently utilize the hardware, improve the performance, and
guarantee the Quality-of-Service. Because different types of architectures have
totally different features, there is not universal scheduling technique that can work
the best across all these architectures and different applications. Scheduling tech-
niques often need to be altered to match the various architectures (e.g., multi-core,
datacenter, and distributed system) accordingly. For example, for a big data pro-
cessing system that runs on large-scale distributed system, task scheduling should
focus on load balancing and data locality; for a datacenter, the scheduling should
aim to guarantee the quality-of-service of the customer-facing applications (e.g.,
web search).

However, a book that elaborates task scheduling techniques for emerging
complex parallel architectures (e.g., multi-socket architecture, heterogeneous
multi-core architecture, and cloud/big data processing platform) is missing.
Previous published works mainly discuss traditional task scheduling techniques for
generalized parallel systems mathematically. But these techniques suffer from low
performance on the emerging complex parallel architectures. To this end, this book
discusses the state-of-the-art task scheduling techniques that are optimized against
different architectures, and these techniques can be applied in real parallel systems
directly.

In this book, we will mainly introduce these task scheduling techniques in the
scenarios of emerging parallel architectures, including the multi-core architecture,

v

www.manaraa.com

cloud platform, and accelerator. The book will examine the current challenges in
this topic, and present detailed solutions including algorithms, methods, and per-
spectives. It is well noticed that parallel architectures are becoming more and more
complex. Instances are multi-socket multi-core architecture, asymmetric multi-core
architecture, various parallel accelerators, distributed parallel architecture, etc. For
different types of parallel architectures, in order to utilize the hardware efficiently
and maximize the performance, different techniques have been introduced and
integrated into the traditional task scheduling policy. To this end, we elaborate these
techniques and demonstrate that they can be implemented efficiently for emerging
parallel architectures. This book consists of three main parts: background, task
scheduling techniques, and perspectives.

Part I: Background

In this part, we mainly introduce the background of this book, including the
emerging widely used parallel architectures and classic task scheduling techniques.
This part includes two chapters.

In the first chapter, we do a survey on the emerging parallel architectures
including multi-core architectures, NUMA-enabled multi-core architectures,
asymmetric multi-core architectures, accelerators, cloud platform, and so on.
Besides these parallel architectures, vendors are now producing other architectures.
For instance, Google releases Tensor Processing Unit (TPU), which is a parallel
architecture as well recently.

In the second chapter, we introduce the classic task scheduling policies and
parallel programming environments. Work-sharing and work-stealing are the two
most classic task scheduling policies. In addition, we introduce many parallel
programming environments, such as Apache Hadoop, Spark, MIT Cilk, TBB, X10,
and so on. These task scheduling policies can be applied in various parallel
architectures but may suffer from low performance. In the next part, we introduce
the techniques that optimize the parallel applications on various parallel
architectures.

Part II: Task Scheduling for Various Parallel Architectures

In this part, we introduce techniques that can be used to improve the performance of
applications on the emerging widely used parallel architectures.

In the third chapter, targeting the multi-socket architecture, we will introduce
cache-aware task scheduling policy, which can improve shared cache utilization in
different sockets.

In the fourth chapter, on the NUMA (Non-Uniform Memory Access)-enabled
architecture, the NUMA-aware task scheduling policy will be introduced, which

vi Preface

www.manaraa.com

can reduce remote memory accesses and improve the performance of applications
in consequence.

In the fifth chapter, we introduce workload-aware task scheduling policy, which
is proposed for asymmetric multi-core architecture. On this kind of architecture,
where different cores operate at different speeds, partitioning by the workload can
truly improve the performance.

In the sixth chapter, we introduce asymptotic technique to allocate workload
between CPU and CPU for CPU+GPU heterogeneous parallel architecture. On this
kind of architecture, different applications have different speedup ratios on the GPU
compared with CPU, because the applications have various characteristics. It is not
trivial to find an optimal workload partition between CPU and GPU.

Nowadays, big data analysis requires tremendous amount of computers to pro-
cess the data in parallel. In the seventh chapter, we will introduce several featured
dynamic task scheduling policies that can significantly improve the performance of
big data processing on heterogeneous cloud platforms.

The eighth chapter contains the quality-of-service aware task scheduling policy
for accelerators. Using this policy, it can improve the accelerator utilization.
Moreover, it also guarantees the quality-of-service of latency-critical applications.

Part III: Summary and Perspectives

In this part, we summarize all the previously introduced task scheduling solutions
for parallel architectures, provide our perspectives, and discuss the possibilities of
designing new dynamic task scheduling policies for more other future parallel
architectures. Especially, we give several guidelines of designing new efficient and
effective task scheduling techniques for those newly released parallel architectures.

After reading this book, we expect the readers will have an overview on the
recent progress of task scheduling policies in parallel architectures. And we also
hope the book can help the readers to quickly master the focused issues and opening
problems if they tend to work in this field. In order to understand this book, the
readers are suggested to have some basic knowledge on computer architecture,
multi-core, and parallel processing.

Shanghai, China Quan Chen
September 2017 Minyi Guo

Preface vii

www.manaraa.com

Acknowledgements

This book was partially sponsored by the National Basic Research 973 Program of
China under grant 2015CB352403, the National Natural Science Foundation of
China (NSFC) (61602301). We are grateful for the editor of this book, Dr. XiaoLan
Yao at Springer for her patience and support to make this book possible.

Shanghai, China Quan Chen
September 2017 Minyi Guo

ix

www.manaraa.com

Contents

Part I Background

1 Emerging Parallel Architectures . 3
1.1 Parallel Architecture is Dominating the World 3
1.2 Shared Memory Parallel Architecture . 4

1.2.1 Multi-core Architecture . 4
1.2.2 Multi-socket Multi-core Architecture 5
1.2.3 Asymmetric Multi-core Architecture 6

1.3 Distributed Memory Parallel Architecture 6
1.3.1 Tight-Coupled Distributed Memory Architecture 7
1.3.2 Loose-Coupled Distributed Memory Architecture 7

1.4 Accelerator . 8
1.4.1 GPGPU . 9
1.4.2 Intel Xeon Phi . 10

1.5 Heterogeneous Parallel Architecture . 11
1.6 Chapter Highlights . 11
References . 12

2 Conventional Task Scheduling Policies . 13
2.1 Manual Task Scheduling Policies . 14

2.1.1 Message Passing . 14
2.1.2 Multi-threading . 15

2.2 Automatic Task Scheduling Policies . 15
2.2.1 Task Scheduling Policies for Data Parallelism 15
2.2.2 Task Scheduling Policies for Task Parallelism 16

2.3 Parallel Programming Environments . 19
2.3.1 Programming Environments for Data Parallelism 19
2.3.2 Programming Environments for Task Parallelism 22

xi

www.manaraa.com

2.4 Problems in Existing Task Scheduling Systems 24
2.5 Chapter Highlights . 24
References . 25

Part II Optimized Task Scheduling for Parallel Architectures

3 Work-Stealing for Multi-socket Architecture 29
3.1 Background and Existing Problems . 29

3.1.1 The TRICI Problem . 30
3.2 Prior Solutions . 32

3.2.1 Scalable Locality-Aware Adaptive Work-Stealing
(SLAW) . 32

3.2.2 Multi-Threaded Shepherds (MTS) 33
3.2.3 Probability Work-Stealing (PWS) 35
3.2.4 Hierarchical Work-Stealing (HWS) 35
3.2.5 CONTROLLED-PDF . 36

3.3 Cache-Aware Bi-tier Work-Stealing . 37
3.3.1 Solution Overview . 37
3.3.2 Design Overview . 38

3.4 Cache-Aware Task Graph Partition Policy 40
3.4.1 Full Tree Oriented Partition Policy 40
3.4.2 General Tree Oriented Partition Policy 43

3.5 Bi-tier Work-Stealing Scheduling Policy 47
3.5.1 Work Stealing Algorithm . 48
3.5.2 Task Generating Algorithm . 49

3.6 Theoretical Time and Space Bounds . 51
3.6.1 Theoretical Bounds for Random Work-Stealing 51
3.6.2 Theoretical Bounds for CAB . 52

3.7 Implementation Methodology . 54
3.7.1 Compiler Support . 54
3.7.2 Runtime Support . 55

3.8 Evaluation of CAB . 55
3.8.1 Performance of CAB-FTO . 57
3.8.2 Performance of CAB-GTO . 61

3.9 Summary . 69
3.9.1 Chapter Highlights . 70

References . 71

4 Work-Stealing for NUMA-enabled Architecture 73
4.1 Chapter Organization . 73
4.2 Background and Existing Problems . 73
4.3 Prior Solutions . 75

4.3.1 Random Pushing . 76
4.3.2 Cluster-Aware Hierarchical Stealing (CHS) 77

xii Contents

www.manaraa.com

4.3.3 Cluster-Aware Load-Based Stealing (CLS) 77
4.3.4 Cluster-Aware Random Stealing (CRS) 79
4.3.5 TATL . 80
4.3.6 NUMALB . 82
4.3.7 Offline Technique for Unstructured Parallelism 84

4.4 Design of Locality-Aware Work-Stealing 87
4.5 Load-Balanced Task Allocator . 88
4.6 Cache-Friendly Task Graph Partitioner . 91

4.6.1 Decide the Initial Partitioning . 91
4.6.2 Search for the Optimal Partitioning 92

4.7 Triple-Level Work-Stealing Policy . 94
4.8 Theoretical Validation . 96
4.9 Implementation Methodology . 97
4.10 Performance Evaluation of LAWS . 98

4.10.1 Experimental Platforms . 98
4.10.2 Performance of LAWS . 100
4.10.3 Effectiveness of Cache-Friendly Task

Graph Partitioner . 103
4.10.4 Scalability of LAWS . 104
4.10.5 Overhead of LAWS . 107
4.10.6 Applicability of LAWS . 108

4.11 Summary . 109
4.11.1 Chapter Highlights . 109

References . 110

5 Dynamic Load Balancing for Asymmetric Multi-core
Architecture . 113
5.1 Chapter Organization . 113
5.2 Problem Formulation . 114
5.3 Existing Solutions . 115

5.3.1 Task Snatching Technique . 115
5.3.2 CAMP . 117
5.3.3 Bias Scheduling . 119
5.3.4 Age-Based Scheduling . 121
5.3.5 Speed-Based Balancing . 123
5.3.6 Scheduling on AMC with Hardware Support 126

5.4 Theoretical Ideal Task Scheduling . 126
5.5 A Practical Polynomial Time Solution . 127
5.6 Design of Asymmetric-Aware Task Scheduling 129

5.6.1 Processing Flow of AATS . 130
5.7 History-Based Task Allocation . 131

5.7.1 Build Task Classes . 132
5.7.2 Allocate Task Classes to C-Groups 134

Contents xiii

www.manaraa.com

5.8 Preference-Based Work-Stealing . 136
5.8.1 Scheduling Within a C-Group . 136
5.8.2 Scheduling Among C-Groups . 137

5.9 Implementation Methodology of AATS 139
5.10 Performance of AATS . 140

5.10.1 Experimental Configurations . 140
5.10.2 Performance on Emulated Platform 143
5.10.3 Effectiveness of the Preference-Based

Work-Stealing . 145
5.10.4 Scalability of AATS . 146
5.10.5 Integrating Task-Snatching in AATS 148

5.11 Summary . 149
5.11.1 Chapter Highlights . 150

References . 150

6 Load Balancing for Heterogeneous Parallel Architecture 153
6.1 Background and Existing Problems . 153
6.2 Prior Solutions . 155

6.2.1 Static Scheduling . 155
6.2.2 Quick Scheduling . 156
6.2.3 Split Scheduling . 158
6.2.4 FinePar . 159

6.3 Heterogeneous-Aware Task Scheduling 161
6.4 Comparison of the Scheduling Policies 162
6.5 Performance of Dynamic Scheduling Policies 164

6.5.1 Experimental Setup . 164
6.5.2 Performance . 165
6.5.3 Effectiveness of Balancing Workload 167
6.5.4 Effectiveness of Predicting the Performance

of GPU . 168
6.5.5 Impact of Profiling Granularity 168

6.6 Summary . 169
6.6.1 Chapter Highlights . 169

References . 170

7 MapReduce for Cloud Computing . 173
7.1 Introduction to MapReduce . 173

7.1.1 Scheduling Policy in MapReduce 174
7.1.2 Adapting to Other Platforms . 175
7.1.3 Variations of MapReduce . 176
7.1.4 Existing Problem in Heterogeneous Environment 176

7.2 Prior Solutions . 177
7.2.1 Least Progress Policy . 177
7.2.2 Longest Approximate Time to End Policy 178

xiv Contents

www.manaraa.com

7.2.3 Calculating Progress Score . 179
7.2.4 Problems in Existing Solutions 180
7.2.5 Tarazu . 181

7.3 Self-adaptive MapReduce Scheduling . 184
7.3.1 Overview of SAMR . 184
7.3.2 Tuning Phase Weights . 185
7.3.3 Calculating Progress Score . 185
7.3.4 Identifying Straggler Task . 186
7.3.5 Identifying Slow Node . 187
7.3.6 Boosting Straggler Task . 188

7.4 Implementation of SAMR . 189
7.5 Performance Evaluation . 190

7.5.1 Experimental Setup . 190
7.5.2 Performance . 191
7.5.3 Effectiveness of Speculative Execution

and Weight Tuning . 192
7.5.4 Parameter Selection in SAMR. 193

7.6 Summary . 196
7.6.1 Chapter Highlights . 196

References . 197

8 QoS-Aware Task Reordering for Accelerators 199
8.1 Background and Existing Problems . 199
8.2 Prior Work on Handling Accelerator Co-location 200

8.2.1 TimeGraph . 201
8.2.2 GPU-EvR . 202
8.2.3 Simultaneous Multi-kernel (SMK) 204
8.2.4 GPU Thread Preemption . 206

8.3 Real System Investigation on Accelerator Co-location 206
8.4 Investigation on Priority-Based Scheduling Policy 208
8.5 Design of Task Scheduling Mechanism

on Accelerators . 209
8.6 Case Study: QoS-Aware Task Scheduling on Accelerator 210

8.6.1 Root Causes of Long Tail Latency at Co-location 210
8.6.2 Design of Baymax . 211

8.7 Task Duration Modeling in Baymax . 212
8.7.1 Task Duration Predictor . 212
8.7.2 Selecting Representative Features 213
8.7.3 Low Overhead Prediction Models 214
8.7.4 Minimizing Prediction Error . 215
8.7.5 Prediction Accuracy . 215

8.8 Scheduling Hand-Written Kernels and Library Calls 218
8.8.1 Breaking down the End-to-end Latency 218
8.8.2 Scheduling Policy . 219

Contents xv

www.manaraa.com

8.9 Scheduling Data Transfer Tasks . 222
8.9.1 Characterizing PCI-e Bandwidth Contention 222
8.9.2 Scheduling Policy . 223

8.10 Performance of Baymax . 224
8.10.1 Experimental Configuration . 224
8.10.2 QoS and Throughput . 225
8.10.3 Scheduling Data Transfer Tasks 226
8.10.4 Beyond Pair-Wise Co-locations 227

8.11 Summary . 228
8.11.1 Chapter Highlights . 229

References . 230

Part III Summary and Discussion

9 Summary and Discussion . 235
9.1 Guideline of Scheduling Technique Design 235
9.2 Multi-socket Architecture . 236
9.3 NUMA-Enabled Multi-socket Architecture 236
9.4 Asymmetric Multi-core Architecture . 237
9.5 Heterogeneous CPU+GPU Architecture 238
9.6 Heterogeneous Cloud Platform . 238
9.7 Non-preemptive Accelerator Architecture 239

Glossary . 241

xvi Contents

www.manaraa.com

Acronyms

AATS Asymmetric-Aware Task Scheduling
AMC Asymmetric Multi-Core
ANN Approximate Nearest Neighbor
BIOS Basic Input/Output System
CAB Cache-Aware Bi-tier Work-Stealing
CF Cache-Friendly
c-group Core Group
CMPI Cache Misses Per Instruction
CPU Central Processing Unit
D&C Divide-and-Conquer
DAG Directed Acyclic Graph
DDR Dual Data Rate
DRAM Dynamic Random Access Memory
DT Duration Table
DVFS Dynamic Voltage and Frequency Scaling
EDC MCDRAM Controller
FIFO First-In-First-Out
FPGA Field-Programmable Gate Array
FTO Full Tree Oriented
GFS Google File System
GPGPU General-Purpose Graph Processing Unit
GTO General Tree Oriented
HATS Heterogeneous-Aware Task Scheduler
HDFS Hadoop Distributed File System
HTT Hyper-Threading Technology
IC Inter-Connect
IPA Intelligent Personal Assistant
ISA Instruction Set Architecture
KNL Intel Xeon Phi (codenamed Knights Landing)
KNN K-Nearest Neighbor

xvii

www.manaraa.com

LATE Longest Approximate Time to End
LAWS Locality-Aware Work-Stealing
LR Linear Regression
MCDRAM Multi-Channel Dynamic Random Access Memory
MIMD Multiple-Instruction-Multiple-Data
MPI Message Passing Interface
MPS Multi-Process Service
MSMC Multi-Socket Multi-core
NUMA Non-Uniform Memory Access
PFWS Parent-First Work-Stealing
PMC Performance Monitoring Counter
QoS Quality-of-Service
RDD Resilient Distributed Dataset, defined in Apache Spark
RPC Remote Procedure Call
SAMR Self-Adaptive Map-Reduce
SIMD Single-Instruction-Multiple-Data
SM Streaming Multiprocessor
SMC Symmetric Multi-core
SOID Size Of Involved Data
SVM Support Vector Machines
TBB Intel Thread Building Blocks
TCO Total Cost of Ownership
TRICI Task Relocation Incurred Cache Interference problem

xviii Acronyms

www.manaraa.com

Part I
Background

www.manaraa.com

Chapter 1
Emerging Parallel Architectures

Abstract In this chapter, a survey on emerging parallel architectures including
Multi-core architectures, accelerators, Datacenter, and distributed system, and the
state-of-the-art dynamic task scheduling systems will be presented respectively.
According to the category of the architecture, in the following chapters, we will
introduce the detailed techniques of task scheduling that can be efficiently used on
the different parallel architectures.

1.1 Parallel Architecture is Dominating the World

Computers play an indispensable role in almost all scientific fields and disciplines
including biomedicine, physical simulations, computational chemistry, aeronautics,
and astronautics. In order to fulfill the urgent requirement for high computational
capacity, emerging computer technology demands increasingly on parallel comput-
ing, such as multi-core architecture, which integrates multiple cores in a central
processing unit (CPU). Nowadays, multicore processors have become mainstream
in both research and public settings, from supercomputers to personal laptops to
smartphones, since they demonstrate superior performance per watt and larger com-
putational capacity than single-core processors.

Traditionally, there are generally two main categories of parallel architectures:
shared memory parallel architecture and distributed memory parallel architecture.
In sharedmemory parallel architecture, themainmemory is shared by all the process-
ing elements (e.g., cores in CPU); On the other hand, in distributed memory parallel
architecture, the main memory is distributed to different nodes and each process-
ing element can only access part of the main memory. In the past decade, parallel
architecture evolves quickly, and some new types of parallel accelerators, such as
General Purpose Graph Processing Unit (GPGPU), Intel Xeon Phi, are used in actual
computers. In the following several sections, we introduce these emerging popular
parallel architectures respectively. In more detail, in Sect. 1.2, we introduce shared
memory parallel architecture. In Sect. 1.3, we introduce distributed memory parallel
architecture. In Sect. 1.4, we introduce the parallel accelerator architecture.

© Springer Nature Singapore Pte Ltd. 2017
Q. Chen and M. Guo, Task Scheduling for Multi-core and Parallel Architectures,
https://doi.org/10.1007/978-981-10-6238-4_1

3

www.manaraa.com

4 1 Emerging Parallel Architectures

When assigning tasks to processing elements in parallel architectures, it is crucial
to balance workloads among all the cores so that the parallel architectures can be
utilized most effectively. To achieve this purpose, researchers have proposed a large
amount of efficient task scheduling policies. We introduce popular task scheduling
policies in Chap.2.

1.2 Shared Memory Parallel Architecture

In sharedmemory parallel architecture, themainmemory is shared by all the process-
ing elements (cores), and every processing element can access data stored in the
shared memory directly. Without loss of generality, in the following of this book, we
use cores to represent processing elements.

1.2.1 Multi-core Architecture

Multi-core architecture, where multiple cores are integrated in the same CPU, is the
most classic shared memory parallel architecture. Figure1.1 presents an example of
multi-core architecture.

As shown in the figure, each core has its own private cache, and all the cores share
the last level cache. In addition, all the cores can access all the data stored in the
main memory directly. Meanwhile, all the cores have the same latency to access the
data from the shared memory. Compared with traditional single-core architecture,
multi-core architecture provides much high computational ability and is much more
energy efficient.

Fig. 1.1 Classic multi-core
architecture

c…c c

L1 Cache L1 Cache L1 Cache

L2 CacheL2 CacheL2 Cache

Shared Cache

…

Main Memory

CPU

http://dx.doi.org/10.1007/978-981-10-6238-4_2

www.manaraa.com

1.2 Shared Memory Parallel Architecture 5

1.2.2 Multi-socket Multi-core Architecture

Although hardwaremanufacturers keep increasing cores inCPU chips, the number of
cores cannot be increased unlimitedly due to physical limitations. To meet the urgent
need for powerful computers, multiple CPU chips are integrated into a Multi-Socket
Multi-Core (MSMC) architecture, in which each CPU chip has multiple cores with a
shared last-level cache and is plugged into a socket. MSMC architecture has already
widely adopted in emerging supercomputers and clusters.

Meanwhile, modern shared-memory MSMC computers and large-scale super-
computing systems often employ NUMA-based (Non-Uniform Memory Access)
memory system, in which the whole main memory is divided into multiple memory
nodes and each node is attached to the socket of a chip. The memory node attached to
a socket is called its local memory node and those that are attached to other sockets
are called remote memory nodes. The cores of a socket access its local memory node
much faster than the remote memory nodes.

Figure1.2 gives an example of MSMC computers that employ NUMA-based
memory system. As shown in the figure, different sockets are connected through
inter-connect (IC) modules. For example, in Intel-based machine, QPI [7] is used to
connect different sockets, while in AMD-based machine, HyperTransport [3] is used
to connect different sockets. While a core c in CPU S accesses (either read or write)
data from thememory node attached to another socket Sr , the data is transferred from
Sr ’s memory node to core c through IC modules that connect socket S and socket Sr .

Multi-socket multi-core architecture is developed on the basis of multi-core archi-
tecture. The main difference between MSMC architecture and traditional multi-core
architecture is that, cores have the same latency to access data from memory in tra-

c c

Shared Cache

IC

Memory Node

c c

Shared Cache

IC

Memory Node

c c

Shared Cache

IC

Memory Node

c c

Shared Cache

IC

Memory Node

……

……

CPU

CPU

CPU

CPU

Fig. 1.2 Multi-socket multi-core architecture

www.manaraa.com

6 1 Emerging Parallel Architectures

ditional multi-core architecture, while have different latencies to access data from
local memory node and remote memory nodes in MSMC architecture.

1.2.3 Asymmetric Multi-core Architecture

While chip manufacturers like AMD and Intel keep producing new CPU chips with
more symmetric cores, researchers are investigating alternative multi-core organiza-
tions such as Asymmetric Multi-Core (AMC) architectures, where individual cores
have different computational capabilities [1–4].

AMC is attractive because it has the potential to improve system performance,
to reduce power consumption, and to mitigate Amdahl’s law [1, 4]. Since an AMC
architecture consists of a mix of fast cores and slow cores, it can better cater for appli-
cations with a heterogeneous mix of workloads [2, 3]. For example, fast, complex
cores can be used to execute the serial code sections, while slow, simple cores can
be used to crunch numbers in parallel, which is more power-efficient. For example,
NintendoWII andNintendoDS useAMCprocessors. Also, manymodernmulti-core
chips offer Dynamic Voltage and Frequency Scaling (DVFS) which can dynamically
adjust the operating frequency of each core and thus is able to turn a symmetric
multi-core chip into a performance-asymmetric multi-core chip.

Figure1.3 presents an example of asymmetric multi-core architectures. In AMC
architectures, such as the Intel Quick-IA [2] and ARM Big-Little [5] architectures,
different types of cores have different computational capacities. On the contrary,
in traditional multi-core architecture, all the cores have the same computational
capacities.

1.3 Distributed Memory Parallel Architecture

Large scale clusters adopt distributed memory parallel architecture in most cases.
While the memory is shared between all the processing elements in shared memory
parallel architecture, in distributed memory parallel architecture, different computer
nodes often have their own private memory. When a core needs data stored in other

Fig. 1.3 Asymmetric
multi-core architecture. In
this figure, cores with
different fill patterns have
different computation
capacities

Main Memory

cc …

L1 L1

c…c

L1 L1

c c…

L1 L1

www.manaraa.com

1.3 Distributed Memory Parallel Architecture 7

nodes’ memory, the data is transferred through networks. According to how the com-
puter nodes are connected, there are tight-coupled distributed memory architecture
and loose-coupled distributed memory architecture.

1.3.1 Tight-Coupled Distributed Memory Architecture

In tight-coupled distributed memory architecture, the computer nodes are connected
by local high-speed inter-connect network using high speed Ethernet and InfiniBand.
Traditional clusters and emerging datacenters adopt tight-coupled distributed mem-
ory architecture. These high performance distributed memory platforms are used to
house Cloud computing or large scale web applications.

Figure1.4 presents how clouds are built on top of datacenters. It is worthing
noting that, the Compute resource and data resource can locate on the same computer
node. In public Cloud, once the resources are leased/rented by users, the users are
responsible to manage the resources themselves.

1.3.2 Loose-Coupled Distributed Memory Architecture

In contrast to tight-coupled distributed memory architecture, in loose-coupled dis-
tributed memory architecture, computer nodes are normally connected with conven-
tional network interface, such as Internet. Grid computing [4] is one of the most

User Side

Internet

Compute
Resource

Compute
Resource

Compute
Resource

Data
Resource

Data
Resource

Network Switch
Cloud Side

Fig. 1.4 Cloud built on top of datacenter. Nodes in datacenter are often connected through high
speed network. Users access cloud service through Internet

www.manaraa.com

8 1 Emerging Parallel Architectures

Domain
Admin

NodesNodes

Internet Internet

Fig. 1.5 Grid computing architecture. In this figure, the domain admin manages compute resource
and data resource in the grid. The nodes are loosely coupled and connected with Internet

representative example of loose-coupled distributed memory parallel architecture.
Figure1.5 shows an example of grid architecture. As shown in this figure, each grid
domain has a domain admin that manages compute resource and data resource in the
domain. Especially, Nodes in a grid tend to be more heterogeneous and geographi-
cally dispersed (thus not physically coupled).

Grid are originally proposed for resource sharing between individual computer
owners through Internet. In Grid, the resource providers are also the resource con-
sumers. The key research point in Grid is how to organize and manage the geograph-
ically dispersed nodes into dynamic virtualized resources, so that these nodes can
work together on large scale tasks.

1.4 Accelerator

Besides CPU-based parallel architecture, more and more parallel accelerators, such
as Nvidia GPGPU [9] and Intel Xeon Phi [6], are proposed to speed up program
execution. Accelerators are often connected with the host machine through PCIe bus.
Generally speaking, when a user decides to process a program on an accelerator, the
program is processed in three steps. Before an accelerator is able to process an
program, the required data is first transferred to the device memory (the memory of
the accelerator). Then, using the data in the device memory, accelerator executes the
program. After the data is processed, accelerator returns the result to the host CPU
through PCIe bus.

In this section, as the example, we introduce two widely-used accelerator, Nvidia
GPGPU that executes an application in Single-Instruction-Multiple-Data (SIMD)
pattern, and Intel Xeon Phi that executes an application in Multiple-Instruction-
Multiple-Data (MIMD) pattern.

www.manaraa.com

1.4 Accelerator 9

1.4.1 GPGPU

GPGPU is a kind of many-core architecture processor which is vastly different from
CPU both in programming interface and performance characteristics. CPU can syn-
chronize with GPU via the driver but this operation suffers from high overhead.

GPU is famous for its parallel processing ability. If the algorithm requires little
to none communication between threads or these communications have good space
locality, GPU can offer a significant speedup compared with CPU. The GPU is
not good at executing programs with many branches and communications, some
unoptimized algorithm may even be slower on GPU than CPU.

The performance of GPU varies for different sizes of workload. GPU needs a
large number of running threads to hide the latency of memory access. The number
of running threads is related to the workload that GPU receives. If the workload is
too small, GPU will not be able to reach its full performance.

Figure1.6 gives an example of GPGPU architecture. As shown in the figure,
a GPGPU consists of multiple stream multiprocessors (SMs) and a global device
memory. Each SM is a SIMD processing element. In old version of GPGPU, a
GPGPU is only able to process a single kernel at a time. This constraint may result
in the poor utilization of GPGPU because the workload of a kernel may not able to
fully utilize all the SMs. In order to eliminate this problem, in emerging GPGPU,
such as Nvidia K40, P100 etc., GPGPU starts to support concurrent kernel execution
that allows multiple kernels to run on a GPGPU concurrently.

A requirement of utilizing GPGPU to speed up the execution of a parallel applica-
tion, programmers need to re-write their programs using CUDA [8] or OpenCL [11].
A multi-threading application developed for CPU is not able to run on GPGPU
directly.

SM SM SM SM SM

SM SM SM SM SM

Global Memory

L2 Cache

CPU PCIe

Fig. 1.6 An example GPGPU architecture. In this figure, each streaming multiprocessor (SM) is a
SIMD processing element

www.manaraa.com

10 1 Emerging Parallel Architectures

1.4.2 Intel Xeon Phi

In order to relieve the burden of re-writing the program, Intel has proposed and
released Xeon Phi accelerator. Similar to GPU, the first generation of Xeon Phi is
connected with host CPU through PCIe bus. The second generation of Xeon Phi,
codenamed Knights Landing was announced in 2013 [10]. The second generation
Xeon Phi could be used as a standalone CPU, not just as an add-in accelerator. Multi-
thread applications created for CPU can run on Intel Xeon Phi accelerator directly,
although the performance is not guaranteed.

As an example, Fig. 1.7 shows the Xeon Phi (codenamed Knights Landing) archi-
tecture (denoted by KNL for short). As shown in the figure, a KNL processor con-
sists of 36 tiles connected by 2D mesh interconnect, 16GB on-chip high bandwidth
MCDRAM, and the corresponding controllers. Each tile consists of two cores and
1MB L2 cache shared by the two cores; each core has two VPUs. In this case, a KNL
processor has up to 36× 2 = 72 hardware cores.

KNL introduces the new Advanced Vector Extensions instruction set, AVX-512,
which provides 512-bit-wide vector instructions and more vector registers.3 In addi-
tion, it continues to support all legacy x86 instructions, making it completely binary-
compatible with prior Intel processors.

D
D

R
 C

hannels

D
D

R
 C

hannels

EDC EDC EDC EDC

EDC EDC EDC EDC

36 tiles connected
by 2D mesh
interconnect

MCDRAM MCDRAM MCDRAM MCDRAM

MCDRAM MCDRAM MCDRAM MCDRAM

D
D

R
 M

em
ory

D
D

R
 M

em
ory

DDR MC DDR MC

2 VPU 2 VPU

CoreCore
1MB
Cache

CHA

Tile

Fig. 1.7 The architecture of Xeon Phi (codenamed Knights Landing) [10]. In the figure, DDR
MC is the DDR memory controller, MCDRAM is multichannel DRAM, EDC is the MCDRAM
controller, and VPU is vector processing unit

www.manaraa.com

1.4 Accelerator 11

KNL introduces a new 2D, cache-coherent mesh interconnect that connects the
tiles, memory controllers, I/O controllers, and other agents on the chip. The mesh
interconnect provides the high-bandwidth pathways necessary to deliver the huge
amount of memory bandwidth provisioned on the chip to the different parts of the
chip. The mesh supports the MESIF (modified, exclusive, shared, invalid, forward)
cache-coherent protocol. It employs a distributed tag directory to keep the L2 caches
in all tiles coherent with each other. Each tile contains a caching/home agent that
holds a portion of the distributed tag directory and also serves as a connection point
between the tile and the mesh. KNL has two types of memory: multichannel DRAM
(MCDRAM) and double data rate (DDR) memory. MCDRAM is the 16-GB high-
bandwidth memory comprising eight devices (2 GB each) integrated on-package and
connected to the KNL die via a proprietary on-package I/O. All eight MCDRAM
devices together provide an aggregate Stream triad benchmark bandwidth of more
than 450 GB per second (GBps). KNL has six DDR4 channels running up to 2,400
MHz,with three channels on each of twomemory controllers, providing an aggregate
bandwidth of more than 90 GBps. Each channel can support at most one memory
DIMM. The total DDR memory capacity supported is up to 384 GB. The two types
of memory are presented to users in three memory modes: cache mode, in which
MCDRAMis a cache forDDR;flatmode, inwhichMCDRAMis treated like standard
memory in the same address space as DDR; and hybrid mode, in which a portion of
MCDRAM is cache and the remainder is flat.

KNL supports a total of 36 lanes of PCIeGen-3 for I/O, split into two x16 lanes and
one x4 lane. It also has four lanes of proprietary Direct Media Interface to connect to
the Southbridge chip, just like Intel Xeon processors. The Southbridge chip provides
support for legacy features necessary for a self-booting system.

1.5 Heterogeneous Parallel Architecture

Besides the architecture introduced above, there aremanyother parallel architectures,
such as heterogeneous parallel architecture. For instance, in emerging large-scale
clusters, accelerators are often integrated with traditional shared memory parallel
architecture for higher computational ability. Figure1.8 gives several heterogenous
architectures that can be used in real system.

1.6 Chapter Highlights

In this chapter, we introduced emerging popular parallel architectures, including
shared-memory parallel architecture, distributed memory parallel architecture, and
various parallel accelerators.

Since different architectures often have totally different characters, there is no
universal task scheduling policy that can work perfectly for all parallel architectures.

www.manaraa.com

12 1 Emerging Parallel Architectures

CPU

GPU

GPU

GPU CPU

Xeon Phi

Xeon Phi

Xeon Phi

CPU

Xeon Phi

GPU

GPUXeon Phi

GPU

GPU

GPU

(a)

(d)

(b)

(c)

Fig. 1.8 Example of heterogeneous parallel architectures

Therefore, as parallel architectures become increase in complexity, dynamic task
scheduling techniques are required to be optimized to accommodate their specific
features. In the rest of this book, we introduce the recent progress in task scheduling
for various parallel architectures.

References

1. S. Balakrishnan, R. Rajwar, M. Upton, and K. Lai. The impact of performance asymmetry in
emerging multicore architectures. In the 32nd Annual International Symposium on Computer
Architecture, pp. 506–517. IEEE (2005).

2. N. Chitlur, G. Srinivasa, S. Hahn, P. K. Gupta, D. Reddy, D. Koufaty, P. Brett, A. Prabhakaran,
L. Zhao, N. Ijih, et al. Quickia: Exploring heterogeneous architectures on real prototypes.
In IEEE International Symposium on High-Performance Comp Architecture, pp. 1–8. IEEE
(2012).

3. H. T. Consortium. Hypertransport i/o link specification, revision 3.10c edition, 2010.
4. I. Foster, Y. Zhao, I. Raicu, and S. Lu. Cloud computing and grid computing 360-degree

compared. InGrid Computing EnvironmentsWorkshop, 2008. GCE’08, pp. 1–10. IEEE (2008).
5. P. Greenhalgh. Big. little processing with arm cortex-a15 & cortex-a7. ARM White paper, pp.

1–8 (2011).
6. Intel. Intel xeon phi processor (2017). https://www.intel.com/content/www/us/en/products/

processors/xeon-phi/xeon-phi-processors.html.
7. Intel. Introduction to the intel quickpath interconnect.White Paper (2009).
8. C. Nvidia. Cuda programming guide (2010).
9. Nvidia. What is gpu-accelerated computing? (2017). http://www.nvidia.com/object/what-is-

gpu-computing.html.
10. A. Sodani. Knights landing (knl): 2nd generation intel® xeon phi processor. In Hot Chips 27

Symposium (HCS), 2015 IEEE, pp. 1–24. IEEE (2015).
11. J. E. Stone, D. Gohara, andG. Shi. Opencl: A parallel programming standard for heterogeneous

computing systems. Computing in science & engineering, 12(3):66–73, 2010.

https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
https://www.intel.com/content/www/us/en/products/processors/xeon-phi/xeon-phi-processors.html
http://www.nvidia.com/object/what-is-gpu-computing.html
http://www.nvidia.com/object/what-is-gpu-computing.html

www.manaraa.com

Chapter 2
Conventional Task Scheduling Policies

Abstract In this chapter, a survey on emerging task scheduling policies will be
presented respectively. There are generally two categories of task scheduling policies:
manual task scheduling policies and automatic task scheduling policies.As automatic
task scheduling policies are more adaptive, we further introduce several widely-used
parallel programming environments that adopt automatic task scheduling policies,
such as Hadoop, Spark, Cilk, X10 etc. In the last part of this chapter, we analyze the
drawbacks of existing task scheduling policies.

In contrast to the quickly development of the hardware for parallel architectures,
many softwares are still not effectively parallelized and thus cannot fully utilize the
powerful computational ability of parallel architectures. The requirement to utilize
hardware efficiently motivates the development of parallel programming environ-
ments and parallel task scheduling policies.

There are generally two categories of task scheduling policies are used in emerging
popular parallel programming environments: manual task scheduling policies and
automatic task scheduling policies. In manual task scheduling policies, programmers
need to explicitly schedule tasks to processing elements (e.g., nodes, cores). Themost
popular programming environments that usemanual task scheduling policies include
MPI [1] and Pthreads [2]. The manual assignment of tasks is often burdensome for
developing parallel applications.

In automatic task scheduling policies, parallel programs can dynamically generate
tasks at runtime, and these tasks can be scheduled between the processing elements
automatically. Nowadays, most well-known programming environments, such as
MIT Cilk [3], Cilk++ [4], TBB [5], Java’s fork-join framework [6], X10 [7], and
OpenMP [8], use automatic task scheduling policies.

When a parallel program is scheduled to run on a parallel architecture, the tasks of
the program are executed concurrently when the dependency between tasks are sat-
isfied. The task scheduling policies are used to assign the parallel tasks to run on the
limited numbers of processing elements. If the workload of different processing ele-
ments is not balanced, the processing element carrying the heaviest workload would

© Springer Nature Singapore Pte Ltd. 2017
Q. Chen and M. Guo, Task Scheduling for Multi-core and Parallel Architectures,
https://doi.org/10.1007/978-981-10-6238-4_2

13

www.manaraa.com

14 2 Conventional Task Scheduling Policies

degrade the performance of the whole parallel program. Therefore, task scheduling
policy has a tremendous impact on the performance and energy efficiency of parallel
system. Through optimizing task scheduling policy, we can greatly improve the per-
formance of parallel programs without rewriting the parallel programs. In addition,
because the automatic task scheduling policies can relieve the burden of paralleliza-
tion and task assignment, they have become one edge-cutting research direction for
both academia and industrial world.

2.1 Manual Task Scheduling Policies

Conventional parallel programming environments normally adopt manual task
scheduling policies. In these programming environments, such as MPI and Pthreads,
programmers need to manually balance the workload between threads/processes for
the good performance.

2.1.1 Message Passing

Message Passing Interface (MPI) is amessage-passing application programmer inter-
face, together with protocol and semantic specifications for how its features must
behave in any implementation. There are many efficient implementations of MPI,
and one of the most well-known implementation is MPICH2 [1]. By using MPI
together with C, C++ or Fortran, programmers can create parallel programs.

The purpose of MPI is to provide a compatible and effective message passing
protocol for widely-used message passing programs. It is the first standardized and
portable message-passing system. An MPI program can run on any parallel comput-
ers (CPU-based) without any modification. When MPI is first proposed, it targets
distributed memory architecture. With the quickly development of computer archi-
tecture,MPI has already supports sharedmemory architecture.MPI has the following
main characters.

• Although the programming model of MPI is proposed for distributed memory
model, the execution of MPI programs does not rely on the low level hardware
architecture.

• The parallelism is explicitly defined in MPI. Programmers have to identify the
potential parallelism in their programs, and explicitly define the parallelism using
interfaces provided by MPI library.

www.manaraa.com

2.1 Manual Task Scheduling Policies 15

2.1.2 Multi-threading

On shared memory architecture, we can use threads to create parallel programs. In
the beginning, all the hardware vendors implemented their own thread techniques
respectively. Due to the diversity of thread techniques, it is challenging to develop
portable and compatible parallel programs that work on different hardware. To this
end, for Unix operating system, a standardized C language threads programming
interface has been specified by the IEEE POSIX 1003.1c standard. Implementations
that adhere to this standard are referred to as POSIX threads (Pthreads) [2].

By introducing the multi-threading method, programmers can create the parallel
programs that make full use of the multiple cores. Compared with sequential model,
the multi-threading programming model has the following advantages.

• It fully explores the parallelism in program and speed up the program execution.
• It supports Asynchronous I/O. When sequential program has to waiting for slow
I/O operations, multi-threading program can execute other instructions instead.

2.2 Automatic Task Scheduling Policies

Compared with manual task scheduling, automatic task scheduling policies are more
user-friendly. In this book, we will discuss how to design and implement efficient
automatic task scheduling policies for various emerging parallel architectures. Paral-
lel programs generally are expressed by data parallelism and task parallelism. Data
parallelism is achieved when each processor performs the same task on different
pieces of distributed data. And, task parallelism is achieved when each processing
element executes a different thread (or process) on the same or different data. The
threads may execute the same or different instructions.

2.2.1 Task Scheduling Policies for Data Parallelism

MapReduce is one of the most popular programming models that is used to express
programs in data parallelism. MapReduce is not only a programming model, but
also a task scheduling model. In MapReduce programming model, programmers
can create Map tasks that process key/value pairs and generate intermediate data,
and Reduce tasks that shuffle on the intermediate data to generate final results. The
scheduling model of MapReduce [9, 10] is first proposed by Google and used in
Cloud computing. Besides Google, MapReduce has also been extended to improve
the performance of applications that can be expressed with high data parallelism
[9–13].

MapReduce is suitable for the distributed processing of large data sets across
clusters of computers. In MapReduce, programmers define the data processing pro-

www.manaraa.com

16 2 Conventional Task Scheduling Policies

Block 0

Block 1

Block 2

Block 3

Block 4

User Program

Master

Worker

Worker

Worker

Worker

Worker

Output 0

Output 1

 Fork Fork

 Assign
Map

 Assign
Reduce

 Read
 Local

Write Write

 Remote
Read

Input Map Phase Intermediate
File (Local)

Reduce Phase Output

Fig. 2.1 The execution step of a MapReduce program

cedure in Map function, and define the data shuffle procedure on intermediate data
in Reduce function. Programmers only need to define Map function and Reduce
function to create distributed parallel programs. When a MapReduce program starts
to run on a cluster/datacenter, programmers do not need to pay attention to the
data splitting, allocating and scheduling. Map tasks are Reduce tasks are automati-
cally managed by the MapReduce runtime system (e.g., Hadoop runtime system). In
addition, the MapReduce runtime system is also responsible for fault-tolerance and
communication managements.

Figure2.1 shows the execution step of a MapReduce program. As shown in this
figure, when a MapReduce program is invoked to run on a cluster/datacenter, it is
executed in the following steps. (1) the program forks workers on distributed nodes
for processing map tasks and reduce tasks. (2) the master worker of the program
assign map tasks and reduce tasks to the workers housed by different nodes. (3)
workers start to execute map tasks, and read corresponding data. Different workers
read different data blocks (4), when a worker completes a map task, the intermediate
data is written to local node to avoid data transfer through network. (5) the reduce
workers then read the output of map tasks from all the nodes remotely. (6) after
reduce tasks complete, the reduce workers output the final results.

It is worth noting that MapReduce uses data parallelism to speed up big data
processing. In MapReduce, different Map tasks execute the same instructions but
operating on different data blocks concurrently. There are low dependency between
different map tasks, as well as different reduce tasks.

2.2.2 Task Scheduling Policies for Task Parallelism

Besides data parallelism, task parallelism is another widely used methodology to
create parallel programs. Different from programs using data parallelism, different
tasks execute different instructions in parallel programs with task parallelism. In

www.manaraa.com

2.2 Automatic Task Scheduling Policies 17

T0

T1

T2 T3

T4 T5 T6 T7

Fig. 2.2 An example of task graph (Directed Acyclic Graph, DAG)

programming environmentswith task parallelism, the execution of a parallel program
can be represented by a task graph, which is a Directed Acyclic Graph (DAG) G =
(V, E), where V is a set of nodes, and E is a set of directed edges [14]. A node ni in a
DAG represents a task (i.e., a set of instructions) that must be executed sequentially
without preemption. The edges in a DAG, denoted by (n j , nk), correspond to the
dependence relationship among the nodes.

Figure2.2 shows an example of task graph, where T0, ..., T7 represent tasks, and
the directed edges between tasks show the dependency relationship between tasks.
For example, task T4 depends on task T2, and only after T2 complete, task T4 can start
to run. Task scheduling policies schedule the tasks to multiple processing elements
and guarantee the dependency relationship between tasks is satisfied.

For easy of description, a processing element is called a worker. Therefore, the
execution of a parallel programcanbe viewed as the parallel traversal of its task graph.
Work-sharing [8] and work-stealing [15] are the two most famous task scheduling
strategies for programs expressed as task parallelism.

2.2.2.1 Work-Sharing

Figure2.3 presents the task scheduling in work-sharing policy. As shown in Fig. 2.3,
in work-sharing, newly generated tasks are pushed into a centralized task pool that
stores all the unexecuted tasks. When a worker is free, it tries to lock the central task
pool. Once the worker successfully locks the central task pool, the worker pops a task
from the pool, releases the lock on the pool, and starts to execute the newly obtained
task. Because the central task pool is locked when a new task is generated and pushed
into the pool, andwhen aworker pops tasks from the pool, work-sharing often suffers
from severe lock contention. Especially, when the number of workers increases, the
severe lock contention would seriously degrade the system performance. The latest
OpenMP [8, 16] uses work-sharing to schedule parallel tasks.

www.manaraa.com

18 2 Conventional Task Scheduling Policies

Worker Worker Worker Worker

Task
Task

Task

...

Central Task Pool

...

Fig. 2.3 Work-sharing task scheduling policy

2.2.2.2 Work-Stealing

In order to relieve the severe lock contention in work-sharing, researchers have pro-
posedwork-stealing policy for task scheduling.Work-stealing policy uses distributed
task pool. In work-stealing policy, every worker has its own task pool. Figure2.4
presents the task scheduling in work-stealing policy. Many programming environ-
ments and scheduling systems, such as MIT Cilk [17], TBB [5] and X10 [7] uses
work-stealing policy to schedule tasks.

Most often each worker pushes tasks to and pops tasks from its own task pool
without locking. Only when a worker’s task pool is empty, it tries to steal tasks
from other workers with locking. Since there are multiple task pools for stealing,
the lock contention is much lower than work-sharing even at task steals. Therefore,
work-stealing performs better than work-sharing as the number of workers increases.

Worker Worker Worker Worker...

Task
Task

Task

Task
Task

Task

Task
Task

Task

Task
Task

Task

Distributed Task Pool

...

...

Fig. 2.4 Work-stealing task scheduling policy

www.manaraa.com

2.3 Parallel Programming Environments 19

2.3 Parallel Programming Environments

There are a large number of parallel programming environments have been proposed
for expressing data parallelism and task parallelism. In Sects. 2.3.1 and 2.3.2, we
introduce emerging widely-used parallel programming environments for data paral-
lelism and task parallelism respectively.

2.3.1 Programming Environments for Data Parallelism

Apache Hadoop [18], Apach Spark [19], Apache Storm [20] (Heron [21]) are the
most well-known parallel programming environments and task scheduling systems
for expressing data parallelism. They have already been used in a large amount of
real-world large scale clusters/datacenters.

2.3.1.1 Apache Hadoop

ApacheHadoop [18] is themost popular open-source implementation ofMapReduce
programmingmodel. TheApacheHadoop project develops open-source software for
reliable, scalable, distributed computing.

TheApacheHadoop software library is a framework that allows for the distributed
processing of large data sets across clusters of computers using simple programming
models. It is designed to scale up from single servers to thousands of machines, each
offering local computation and storage. Rather than rely on hardware to deliver high-
availability, the library itself is designed to detect andhandle failures at the application
layer, so delivering a highly-available service on top of a cluster of computers, each
of which may be prone to failures.

The Apache Hadoop project includes these modules:

• Hadoop Common: The common utilities that support the other Hadoop modules.
• HadoopDistributed File System (HDFS): A distributed file system that provides
high-throughput access to application data.

• HadoopYarn: A framework for job scheduling and cluster resource management.
• HadoopMapReduce: AYARN-based system for parallel processing of large data
sets. Hadoop MapReduce is a software framework for easily writing applications
which process vast amounts of data (multi-terabyte data-sets) in-parallel on large
clusters (thousands of nodes) of commodity hardware in a reliable, fault-tolerant
manner.

www.manaraa.com

20 2 Conventional Task Scheduling Policies

Fig. 2.5 Components in
Apache Hadoop

HDFS (Reliable Storage)

Yarn (Resource Management)

MapReduce
(Task Scheduling)

Other
(e.g., Hive, Storm)

Figure2.5 shows the components in the latest version of Apache Hadoop (version
2.x). It is worth noting that there are many other systems (e.g., Apache Hive, Apache
Storm) are implemented on top of the Hadoop Yarn resource manager.

2.3.1.2 Apache Spark

Apache Spark [19] is a fast and general-purpose cluster computing system. It pro-
vides high-level APIs in Java, Scala, Python and R, and an optimized engine that
supports general execution graphs. It also supports a rich set of higher-level tools
including Spark SQL for SQL and structured data processing, MLlib for machine
learning, GraphX for graph processing, and Spark Streaming. Figure2.6 shows the
main components in Apache Spark.

At a high level, every Spark application consists of a driver program that runs
the users main function and executes various parallel operations on a cluster. The
main abstraction Spark provides is a resilient distributed dataset (RDD), which is a
collection of elements partitioned across the nodes of the cluster that can be operated
on in parallel. RDDs are created by starting with a file in the Hadoop file system
(or any other Hadoop-supported file system), or an existing Scala collection in the
driver program, and transforming it. Users may also ask Spark to persist an RDD
in memory, allowing it to be reused efficiently across parallel operations. Finally,
RDDs automatically recover from node failures.

A second abstraction in Spark is shared variables that can be used in parallel
operations. By default, when Spark runs a function in parallel as a set of tasks on
different nodes, it ships a copy of each variable used in the function to each task.
Sometimes, a variable needs to be shared across tasks, or between tasks and the driver
program. Spark supports two types of shared variables: broadcast variables, which

Fig. 2.6 Components in
Apache Spark [19] Spark

SQL
Spark

Streaming

MLlib
(Machine
Learning)

GraphX
(Graph)

Apache Spark

www.manaraa.com

2.3 Parallel Programming Environments 21

can be used to cache a value in memory on all nodes, and accumulators, which are
variables that are only added to, such as counters and sums.

2.3.1.3 Apache Storm

Apache Storm [20] is a free and open source distributed realtime computation system.
Stormmakes it easy to reliably process unbounded streams of data, doing for realtime
processing what Hadoop did for batch processing. Storm is simple, can be used with
any programming language.

Stormhasmanyuse cases: realtime analytics, onlinemachine learning, continuous
computation, distributed RPC, ETL, and more. Storm is fast: a benchmark clocked it
at over a million tuples processed per second per node. It is scalable, fault-tolerant,
guarantees your data will be processed, and is easy to set up and operate.

Storm integrates with the queueing and database technologies you already use. A
Storm topology consumes streams of data and processes those streams in arbitrarily
complex ways, repartitioning the streams between each stage of the computation
however needed.

In Storm, nodes can be classified into three categories: nimbus node (master node),
zookeeper nodes, and supervisor nodes. The nimbus node is responsible for uploading
jobs for execution, distributing code across all the nodes, launchingworkers across all
the nodes, and reallocating workers as needed. The zookeeper nodes are responsible
for coordinating all the supervisor nodes. The supervisor nodes actually host the
workers. They communicate with nimbus node through zookeeper nodes, start and
stop workers on them according to the signals from the nimbus node. Figure2.7
shows the organization of the nodes in a storm cluster.

Fig. 2.7 The organization of
the nodes in a storm
cluster [20]

Nimbus

ZooKeeper

ZooKeeper

ZooKeeper

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

Supervisor

www.manaraa.com

22 2 Conventional Task Scheduling Policies

2.3.2 Programming Environments for Task Parallelism

For task parallelism, due to the good performance of work-stealing policy, academia
and industry world have developed task scheduling systems using work-stealing
policy. For instance, Supertech Research group at MIT developed MIT Cilk [17],
IBM developed X10 [7], Intel developed Cilk Plus [4] and TBB [5]. As Cilk Plus
is developed based on MIT Cilk, in this section, we introduce the widely-used MIT
Cilk, TBB and X10 task scheduling system.

2.3.2.1 MIT Cilk

MIT Cilk is one of the earliest parallel programming environments that implement
task-stealing [17]. It extends C with three keywords: cilk, spawn and sync to declare
parallelism in the program. cilk identifies a procedure as a Cilk procedure, spawn is
used to generate a child task, and sync waits for all the child tasks that are generated
by the current task to return. Only Cilk procedures can be invoked with spawn as a
task.

Algorithm 1 shows an simple example of MIT Cilk program. It worth noting
that, if we remove the keywords cilk, spawn and sync in Algorithm 1, the program
becomes a sequential program. MIT Cilk provides user-friendly programming inter-
face. Using MIT Cilk, programmers can simply parallelize sequential programs by
creating parallel tasks using spawn and inserting sync for synchronizing the parallel
tasks. The modified programs can run on parallel architecture in parallel efficiently.

Algorithm 1 An example MIT Cilk program.
cilk void foo (int start, int end) {
if(end-start < threshold) {
more instructions;

} else {
int mid = (start + end) / 2;
spawn foo (start, mid);
spawn foo (mid, end);
sync;
return;

}
}
cilk void main (int start, int end) {
spawn foo (start, end);
sync;
return;

}

MIT Cilk consists of a compiler and a scheduler. Cilk compiler, named as cilk2c,
is a source-to-source translator that transforms a Cilk source into a C program. cilk2c

www.manaraa.com

2.3 Parallel Programming Environments 23

generates a fast clone and a slow clone for every Cilk procedure. The slow clone is
executed if the task of the procedure is stolen; otherwise, the fast clone is executed
instead. In addition, cilk2c uses a task frame data structure for every Cilk procedure.
Once a task is generated, a task frame is created to store the information needed by
the task and the scheduler. Cilk scheduler is a traditional task-stealing scheduler.

2.3.2.2 TBB

TBB (ThreadBuildingBlocks) [5] is a set of C++ template library developed by Intel.
Using the template provided by Intel TBB, programmers do not need to consider how
to assign tasks to workers, and do not need to schedule the workers. There are six
main modules in TBB: Algorithm, Container,Memory Allocation. Synchronization,
timing, and Task Scheduling. Using the interface provided by TBB, programmers
can easily define parallel tasks that can be dynamically schedule to different workers
at runtime. In order to fully utilize the available resources in the parallel architec-
ture, TBB adopts work-stealing to dynamically schedule the executable tasks. TBB
provides a large amount of template functions, programmers can use these functions
to create parallel tasks automatically. Algorithm 2 shows an sorting program written

Algorithm 2 An example of TBB program.
#include <tbb/task_scheduler_init.h>
#include <tbb/parallel_sort.h>
#include <math.h>
int main() {
const int N = 100000;
float a[N];
for(int i = 0; i < N; i++) a[i] = sin((double)i);
tbb::task_scheduler_init init; //Initialization
tbb::parallel_sort(a, a + N); //Sorting
return 0;

}

in TBB. Observed from the algorithm, we can find that it is easy to create parallel
programs using Intel TBB. By simply replacing the sequential library call “std::sort”
with “tbb::parallel_sort” provided in TBB, the sequential sorting program is updated
to parallel sorting program. The task scheduling system of TBB uses work-stealing
to balance the tasks generated by parallel_sort to different workers at runtime.

2.3.2.3 X10

MIT Cilk and TBB can only run on shared memory parallel architecture, and do
not support distributed memory architecture. In order to solve this problem, IBM
proposed the X10 [22] task scheduling system for distributed memory parallel archi-

www.manaraa.com

24 2 Conventional Task Scheduling Policies

tecture. X10 is a parallel programming and scheduling system based on Java. The
programming model used in X10 is “Asynchronous, Partitioned Global Address
Space, APGAS”.

X10 extends the traditional programming model, and adds three keywords: place,
async, and finish. Programmers can use place to define a task is created on which
compute node, and use async to create parallel tasks, and use finish to create syn-
chronization point. Functionally, the keyword async in X10 is similar to the keyword
spawn in MIT Cilk; and the keyword finish in X10 is similar to sync in MIT Cilk.
Meanwhile, the X10 runtime system uses work-stealing policy to schedule the tasks
created with async to different workers running on distributed nodes.

2.4 Problems in Existing Task Scheduling Systems

However, the aforementioned task scheduling systems assume simple parallel archi-
tecture, and are not optimized against the complex parallel architectures used in real
systems. Because traditional task scheduling policies lack targeted optimization, they
cannot benefit from the features of the newly developed parallel architectures, which
may result in poor performance.

Generally speaking, there are the following main issues that need to be resolved
in order to create an effective dynamic task scheduling policy for complex parallel
architectures.

• The utilization of shared cache in each socket of the MSMC architectures must be
improved, to improve cache performance.

• Remote memory access on the NUMA-based shared memory system of MSMC
architectures must be reduced, to reduce data access latency.

• Task distribution to the asymmetric cores in the AMC architecture must be sched-
uled so that the tasks are all completed at the same time.

• The workload should be balanced across heterogeneous processing elements (e.g.,
CPU and GPU) to achieve the best performance.

• The task scheduling policy should be optimized against big data processing, to
improve data locality and relieve network congestion.

• The Quality-of-Service of user-facing application have to be guaranteed when
schedule tasks to the same cluster/datacenter.

2.5 Chapter Highlights

In this chapter, we introduce widely-used task scheduling policies and the program-
ming environments that support the corresponding scheduling policies. In the fol-
lowing chapters, using the random work-stealing policy proposed in MIT Cilk as
the baseline, we introduce the techniques proposed to address the above problems.

www.manaraa.com

2.5 Chapter Highlights 25

Optimize for
Multi-socket
Architecture
(Chapter 3)

Optimize for
Asymmetric
Multi-core
(Chapter 5)

Optimize for
Heterogeneous

Platform
(Chapter 6)

Optimize
for

Accelerator
(Chapter 8)

Parallel Architectures

Parallel Program

Operating System

......

Runtime Scheduling System

Optimize
for NUMA
Platform

(Chapter 4)

Compiler Support

Parallel Program Parallel Program

Optimize
for Cloud

(Chapter 7)

Fig. 2.8 The organization of this book. We introduce techniques proposed to improve random
work-stealing for various parallel architectures

Figure2.8 presents the organization of this book. More specifically, we first discuss
task scheduling techniques for improving the performance of parallel applications on
variousCPU-based sharedmemory parallel architecture (Chaps. 3, 4 and 5). Then,we
discuss task scheduling techniques for improving application performance on shared
memory heterogeneous architecture consists of CPU and accelerator (Chap.6). After
that, we discuss efficient task scheduling polices for big data processing on large-
scale distributed memory parallel architecture (Chap. 7). Lastly, we discuss how to
schedule the co-located tasks to guarantee theQoS of high priority applications while
multiple applications are executed on the same cluster/datacenter (Chap. 8).

References

1. W. Gropp. Mpich2: A new start for mpi implementations. In Recent Advances in Parallel
Virtual Machine and Message Passing Interface, volume 2474 of Lecture Notes in Computer
Science, pages 7–7. Springer, 2002.

2. D. Butenhof. Programming with POSIX threads. Addison-Wesley Longman Publishing Co.,
Inc, Boston, MA, USA, 1997.

3. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou. Cilk:
an efficient multithreaded runtime system. Journal of Parallel and Distributed Computing,
37(1):55–69, August 1996.

4. C. Leiserson. The Cilk++ concurrency platform. In the 46th Annual Design Automation Con-
ference, pages 522–527. ACM, 2009.

5. J. Reinders. Intel threading building blocks. O’Reilly, 2007.
6. D. Lea. A Java fork/join framework. In the ACM conference on Java Grande, pages 36–43.

ACM, 2000.

http://dx.doi.org/10.1007/978-981-10-6238-4_3
http://dx.doi.org/10.1007/978-981-10-6238-4_4
http://dx.doi.org/10.1007/978-981-10-6238-4_5
http://dx.doi.org/10.1007/978-981-10-6238-4_6
http://dx.doi.org/10.1007/978-981-10-6238-4_7
http://dx.doi.org/10.1007/978-981-10-6238-4_8

www.manaraa.com

26 2 Conventional Task Scheduling Policies

7. J. Lee and J. Palsberg. Featherweight X10: a core calculus for async-finish parallelism. In
Proceedings of the 15th ACM SIGPLAN symposium on Principles and Practice Of Parallel
Processing, pp. 25–36, Bangalore, India, 2010. ACM.

8. E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F.Massaioli, X. Teruel, P. Unnikrishnan,
and G. Zhang. The design of OpenMP tasks. IEEE Transactions on Parallel and Distributed
Systems, 20(3):404–418, 2009.

9. L. A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The google cluster architecture.
Micro, 23(2):22–28, 2003.

10. R. Buyya, C. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and emerging IT
platforms: vision, hype, and reality for delivering computing as the 5th utility. FutureGeneration
Computer Systems, 25(6):599–616, 2009.

11. J. Dean and S. Ghemawat. MapReduce: a flexible data processing tool. Communications of
the ACM, 53(1):72–77, 2010.

12. J. Varia. Cloud architectures. White Paper of Amazon, http://jineshvaria.s3.amazonaws.com/
public/cloudarchitectures-varia.pdf (2008).

13. L. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the clouds: towards a
cloud definition. ACM SIGCOMM Computer Communication Review, 39(1):50–55, 2008.

14. A. Gerasoulis and T. Yang. A comparison of clustering heuristics for scheduling directed
acyclic graphs on multiprocessors. Journal of Parallel and Distributed Computing, 16(4):276–
291, 1992.

15. R. D. Blumofe. Executing Multithreaded Programs Efficiently. Ph.D. thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Sep-
tember 1995. MIT Laboratory for Computer Science Technical Report MIT/LCS/TR-677.

16. L. Dagum and R. Menon. Openmp: an industry standard api for shared-memory programming.
Computational Science & Engineering, 5(1):46–55, 1998.

17. M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5 multithreaded
language. In the ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, pp. 212–223. ACM, June 1998.

18. Hadoop. Hadoop home page. http://hadoop.apache.org/ (2011).
19. Spark. Spark home page. http://spark.apache.org (2016).
20. Storm. Storm home page. http://storm.apache.org (2016).
21. Twitter. Heron home page. https://github.com/twitter/heron (2016).
22. X10. X10: Performance and productivity at scale. http://x10-lang.org (2017).

http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf
http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf
http://hadoop.apache.org/
http://spark.apache.org
http://storm.apache.org
https://github.com/twitter/heron
http://x10-lang.org

www.manaraa.com

Part II
Optimized Task Scheduling
for Parallel Architectures

www.manaraa.com

Chapter 3
Work-Stealing for Multi-socket Architecture

Abstract In this chapter, we discuss emerging dynamic task scheduling policies
that can improve the performance of parallel applications on multi-socket archi-
tecture. In current real systems, multi-core computers often adopt a multi-socket
multi-core architecture with shared caches in each socket. However, the traditional
task scheduling policies (for example work-stealing) tend to pollute the shared cache
and incur more cache misses. Due to the good performance of work-stealing policy,
we use the traditional random work-stealing policy as the baseline in this chapter. To
relieve this problem, in this chapter, we present a Cache-Aware Bi-tier work-stealing
(CAB) policy. CAB improves the performance of memory-bound applications by
reducing memory footprint and cache misses of tasks running inside the same CPU
socket. CAB adaptively uses a task graph partitioner to divide an execution task
graph into the inter-socket tier and the intra-socket tier. Tasks in the inter-socket tier
are scheduled across sockets while tasks in the intra-socket tier are scheduled within
the same socket. Experimental results show that CAB can significantly improve the
performance of memory-bound applications compared with the traditional random
work-stealing policy.

3.1 Background and Existing Problems

In Multi-socket Multi-core (MSMC) architecture, each CPU die is plugged into a
socket and the cores in the same socket have a shared cache; the cores from different
sockets can only share the main memory. However, existing task scheduling poli-
cies, such as work-sharing [2] and work-stealing [9], perform poor in the MSMC
architecture.

In work-sharing, all the tasks are stored in the central task pool and a worker
can execute any tasks in the pool. Therefore, from high level, tasks are randomly

Part of contents in this chapter has been published through IEEE Transactions on Parallel and
Distributed Systems. Reprinted from Ref. [15], with permission from IEEE. Figures 3.1, 3.2,
3.6 and 3.8 in this chapter have been published through IEEE Transactions on Parallel and
Distributed Systems. Reprinted from Ref. [15], with permission from IEEE

© Springer Nature Singapore Pte Ltd. 2017
Q. Chen and M. Guo, Task Scheduling for Multi-core and Parallel Architectures,
https://doi.org/10.1007/978-981-10-6238-4_3

29

www.manaraa.com

30 3 Work-Stealing for Multi-socket Architecture

scheduled to different workers in work-sharing. In work-stealing, when a worker is
free and its task pool is empty, it randomly select a victim worker and steal a task from
it. Because the victim worker is randomly selected, work-stealing policy schedule
tasks randomly to different workers as well. This randomness causes Task Relocation
Incurred Cache Interference (TRICI) problem in the MSMC architecture, which is
depicted as follows.

3.1.1 The TRICI Problem

Suppose there are three independent tasks t1, t2 and t3 to be executed in an MSMC
architecture. Task t1 and task t2 share data, but they share nothing with task t3. If t1
and t2 are scheduled to the workers running on cores of the same CPU socket, the
shared data are loaded into the shared caches (e.g., L3 cache) only once but can be
accessed by both t1 and t2. However, this data sharing is not respected by traditional
task scheduling algorithms due to their randomness in selecting workers for the tasks.
As a result, the task schedulers could move t1 or t2 to a worker running on a core in
a different socket, where t3 is being executed. Thus t1 and t2 cannot share cache and
have to load data into their own caches separately.

The random task scheduling has two main weaknesses in MSMC architecture.

• First, it increases shared cache misses. Suppose t2 is scheduled to the socket of t3.
Task t2 cannot use the data already loaded into the caches by t1 and have to read
data from the main memory.

• Second, the random scheduling enlarges the memory footprint of the sockets. Since
t2 and t3 share nothing but run in the same socket, the memory footprint of the
socket will become larger. This increases the chance of cache misses and causes
performance degradation, because t2 may pollute the cache entries for t3 due to
conflicts or limited cache capacity.

The two weaknesses results in performance degradation problem in the MSMC
architecture, which is called TRICI problem. In more detail, we use the task graph
presented in Fig. 3.1 as an example to explain the TRICI problem in an MSMC
architecture. In the figure, the solid lines represent the task generating relationship
and the strings by the side of nodes are the identifiers of the corresponding tasks.
In many parallel divide-and-conquer programs, neighbor tasks need to access some
shared data. For example, Heat distribution simulation algorithm and Successive
over-relaxation algorithm are examples of such parallel programs. Therefore, t1 and
t2, t3 and t4 in Fig. 3.1 have shared data respectively.

We assume the program in Fig. 3.1 runs on a dual-socket dual-core architecture.
If t1, t2, t3 and t4 are scheduled as shown in Fig. 3.2a, the shared data between t1 and
t2 and the shared data between t3 and t4 is only read into the shared cache once from
the main memory. Since most tasks can access the shared data in the shared cache
of the socket, cache misses are reduced.

www.manaraa.com

3.1 Background and Existing Problems 31

Main

t1 t2 t3 t4

1

1_1

2_1_11_1_1

Inter-socket tier
Intra-socket tier

Fig. 3.1 A general task graph for divide-and-conquer programs

c0 c1

Socket 0

c2 c3

Socket 1

t2 t1 t3 t4

(a) Optimal scheduling

c0 c1

Socket 0

c2 c3

Socket 1

t1t3 t2 t4

(b) Another possible scheduling

Fig. 3.2 Two possible scheduling of t1, t2, t3 and t4 on a dual-socket dual-core architecture. The
first scheduling can gain performance improvement due to cache sharing and reduction of memory
footprint

However, for traditional work-stealing, since it randomly chooses a victim to steal
tasks, t1, t2, t3 and t4 are likely to be scheduled to the cores as shown in Fig. 3.2b. In
this case, each task needs to read all its data from the main memory. This larger mem-
ory footprint leads to more compulsory cache misses. Even worse, if the memory
footprint exceeds the capacity of the shared cache, the situation leads to more capac-
ity cache misses and increases the chances of conflict cache misses. The resulted
larger number of cache misses will lead to the worse performance of memory-bound
applications.

www.manaraa.com

32 3 Work-Stealing for Multi-socket Architecture

3.2 Prior Solutions

Work-stealing is increasingly popular for automatic load balancing inside parallel
applications. There has been a lot of research work on its adaptation and improve-
ment [11, 23, 24, 29, 34].

Cache awareness is an interesting issue in work-stealing. In terms of theoretical
work, Acar et al. [1] presented a theoretical bound on the number of cache misses for
random work-stealing and implemented a locality-guided work-stealing algorithm
on a single-socket SMP. Cole et al. [16] analyzed the cache misses of algorithms
using random work-stealing, focusing on the effects of false sharing. Chen et al. [12]
compared and analyzed cache behaviors of work-stealing and a parallel depth-first
scheduler on a multi-core simulator that has shared L2 caches among cores. It was
proposed to promote constructive cache sharing through controlling task granularity.
However, the above studies did not take the MSMC architecture into consideration.
In the following of this section, we introduce some representative work on improving
the performance of parallel applications through improving data locality.

3.2.1 Scalable Locality-Aware Adaptive Work-Stealing
(SLAW)

Guo et al. [22] proposed SLAW, a Scalable Locality-aware Adaptive Work-stealing
scheduler. SLAW identifies and addresses two important issues that limit the scala-
bility in current work-stealing schedulers: use of a fixed task scheduling policy, and
locality-obliviousness due to randomized stealing.

There are generally two policies for work-stealing when spawning a task: child-
first and parent-first. Guo et al. [21] compared the performance of the two policies in
different scenarios. Under the child-first policy, the worker will execute the spawned
task eagerly and leave the continuation to be stolen. Under the parent-first policy,
the worker will make the spawned task available for stealing and itself will con-
tinue execution on the parent task. Child-first and parent-first policies are usually
implemented with different stack and memory bounds and also exhibit performance
limitations in different scenarios. The child-first policy is good for scenarios when
stealing is rare. It has a provable memory bound but its implementation may over-
flow the stack for large irregular computations. The parent-first policy is good for
scenarios when stealing is frequent. It can be implemented with low stack usage but
is not space-efficient in general. In another word, a stack-based implementation of
the child-first policy increases stack pressure, where as the parent-first policy can be
used to reduce stack pressure (but at the expense of additional context switches).

Both child-first and parent-first policies have their strengths and are used perva-
sively in work-stealing schedulers. For example, MIT Cilk [8], Cilk++ [28], and Intel
TBB [32] use the child-first policy, while Java’s fork-join framework [25] and Task
Parallel Library (TPL) [27] use the parent-first policy. However, neither child-first

www.manaraa.com

3.2 Prior Solutions 33

nor parent-first policy always perform the best. It is hard to determine a priori which
policy should be used. In order to solve this problem, SLAW is designed to achieve
the best of both policies, while ensuring bounded stack usage. In SLAW, tasks are
generated following either the child-first policy or the parent-first policy according
to the stack pressure and work-stealing conditions.

Assuming that S is the space limit (or threshold) for a worker’s stack. If the spawn
tree depth of a program is greater than S, then it is necessary at some point to use the
parent-first policy to ensure that a worker’s stack space does not exceed threshold S.

Besides the stack bound, SLAW also considers the total memory bound. The total
memory bound is determined by the memory usage of both started and fresh tasks.
Started tasks are those that have been executed by some processor; fresh tasks have
been spawned but never executed. When only spawning under child-first policy, there
will be no fresh tasks. However, under the parent-first policy, all child tasks will be
created as fresh tasks and saved on the heap. In order to provide a total memory
guarantee for the adaptive work-stealing scheduler: the scheduler must switch to the
child-first policy when the number of fresh tasks exceeds a threshold; this ensures
that the total memory used by fresh tasks are bounded.

These two conditions are enough to establish the stack and total memory bounds
for the adaptive scheduling algorithm in SLAW. One thing that is important to notice
is that SLAW treats stack bound as a hard bound and gives the stack condition higher
priority than the fresh task condition. When the stack threshold is reached, parent-
first policy will always be used to avoid stack overflow regardless of the number of
fresh tasks created.

SLAW employs a runtime heuristic to select the policy if neither of the above two
conditions is met. The heuristic is based on a simple estimation on the likelihood of
the new spawned task being stolen. It computes the number of tasks that were stolen
from the worker during the last interval. If the number of steals is greater than INT ,
this implies the steal rate is higher than the task creation rate. The scheduler will
use the parent-first policy for the new task in the next interval to increase the rate of
distributing tasks to other workers. Otherwise, the scheduler assumes the new task
will not be stolen and thus uses child-first policy for the next interval to reduce the
overhead of context switches.

Although SLAW uses both policies as in our solution for the TRICI problem,
CAB, it does not associate the policies to the DAG tiers as in CAB (to be presented
shortly). We adopt the parent-first policy to quickly generate the tasks in the inter-
socket tier, but use the child-first policy to prevent the excessive task proliferation in
the intra-socket tier.

3.2.2 Multi-Threaded Shepherds (MTS)

Olivier et al. [30] proposed MTS (Multi-Threaded Shepherds) to reduce cache misses
in MSMC architecture. A shepherd is a group of workers affiliated with the cores in

www.manaraa.com

34 3 Work-Stealing for Multi-socket Architecture

the same socket. In MTS, when all the cores in a socket are free, the head core of the
socket steals a batch of tasks from other sockets.

In MTS, each socket schedules tasks depth-first locally through LIFO queue oper-
ations. An idle socket obtains more work by stealing the oldest tasks from the task
queue of a busy socket. MTS implemented two probing schemes to find a victim
socket: choosing randomly and commencing search at the nearest socket to the thief
socket. The two schemes show similar result in MTS. In the work stealing scheduler,
interruptions to busy sockets are minimized because the burden of load balancing is
placed on the idle sockets. Locality is preserved because newer tasks, whose data is
still hot in the processors cache, are the first to be scheduled locally and the last in
line to be stolen.

The cost of work stealing operations on multi-socket multicore systems varies
significantly based on the relative locations of the thief and victim, e.g., whether
they are running on cores on the same chip or on different chips. Stealing between
cores on different chips reduces performance by incurring higher overhead costs,
additional cold cache misses, remote memory access costs, and coherence misses
due to false sharing.

In order to overcome the limitations of both work stealing and shared queues,
within each socket, MTS maps one worker to each core. Among workers in each
socket, a shared LIFO queue provides depth-first scheduling close to serial order to
exploit the shared cache. Thus, load balancing happens naturally among the work-
ers on a chip and concurrent tasks have possible overlapping localities that can be
captured in the shared cache.

Between sockets, work stealing is used to maintain load balance. Each time the
sockets task queue becomes empty, only the first worker to find the queue empty
steals enough tasks from the socket of another socket to supply all the workers in
its socket with work. The other workers in the socket spin until the stolen work
appears. Aggregate task queueing for workers within each socket reduces the need
for remote stealing and decreases the number of probes required to find available
work by a factor of the number of workers per socket. While a shared queue can
be a performance bottleneck, the number of cores per chip is bounded, and locking
operations are fast within a chip. However, MTS cannot ensure tasks executed by
cores in the same socket have shared data, and thus may still suffer from the TRICI
problem.

An MSMC architecture can also be viewed as an two-level hierarchical architec-
ture, where the cores are in the lower level and the sockets are in the upper level.
For distributed hierarchical architecture, prior work [31] proposed PWS (Probability
Work-Stealing) and HWS (Hierarchical Work-Stealing) to reduce communications
among different computers thus improve the performance of work-stealing applica-
tions.

www.manaraa.com

3.2 Prior Solutions 35

3.2.3 Probability Work-Stealing (PWS)

In PWS [31], processors had higher probability to steal tasks from processors in the
same computer. This requires a description of the hierarchy to estimate the distance
between the thief and the target processor. PWS then applies the classical work-
stealing algorithm with following modification. The probability to choose a target
computer for steal attempts is not uniform anymore but instead proportional to the
inverse of the distance between the thief and the target processor. This strategy has
the advantage of increasing the data locality and of reducing the average latency of
steal requests.

In the scenario of MSMC architecture, a worker has higher possibility to steal
tasks from the workers running in the same socket. The downside of this technique
is that the performance of the same application is not stable across different runs.
This weakness of PWS makes it impractical in real-system MSMC architecture.

3.2.4 Hierarchical Work-Stealing (HWS)

Besides PWS, researchers also proposed Hierarchical Work-Stealing (HWS) [31] to
improve the performance of work-stealing applications in hierarchical architecture.

By analyzing the behavior of the traditional work-stealing algorithm, the main
functionality of work-stealing is to balance the workload between the thief worker
and the victim worker. The main idea behind HWS is to use the same mechanism
in each level. To this end, for the hierarchical MSMC architecture, HWS suggests
stealing in a single steal attempt, a large amount of worker from the victim socket.
It changes the choice of the stolen task as well as the target worker.

In more detail, the hierarchical platform is divided into multiple processor groups
which are sets of processors connected with a fast link. For example, it could be a
cluster or the set of cores in one processor. The risk of congestion between groups
arises with the amount of transferred data. In order to resolve this problem, HWS
choses to restrict in each group, the number of processors which can steal another
group. In each group, only one processor sends remote steal requests in HWS. This
processor is called a leader.

This change may however have a strong impact on load-balancing. Since the
number of remote steal requests is decreased, HWS prefers remote thieves to steal a
larger amount of work. Therefore, each leader donates some work to its cluster when
there is not enough work, and keeps the large tasks to balance efficiently the load
between leaders.

In order to distinguish tasks with a large amount of work, a limit is given by the
user. The level of a task is determined according to the task graph: the level of a task
is equal to the number of its parent tasks up to the root task. When new tasks are
created, their level is their parent level incremented by one. In HWS, tasks are divided
into global tasks and local tasks; workers are divided into leaders and slaves. Global

www.manaraa.com

36 3 Work-Stealing for Multi-socket Architecture

tasks have a level below the limit and can be scheduled between different groups,
while local tasks have a level higher than the limit and can only be schedule between
workers in the same group.

HWS artificially limits the number of global tasks in any application. For example
an application recursively dividing the work in halves like in some divide and conquer
problems has 2l global tasks where l is the chosen limit. To avoid a huge number of
global tasks, l is chosen small. Global tasks are centralized on the leader.

• Leaders: they execute only global tasks. And they balance the load between groups
and manage the load inside their groups.

• Slaves: they perform the classical work-stealing algorithm within their group.

In order to balance the load between groups, each leader has two stacks: the global
stack for global tasks accessed by leaders, the local stack for local tasks accessed by
slaves from its group. In more detail, a leader obtains a new task as follows. When
the execution starts, all tasks are located on leaders stacks. Leaders which have some
tasks execute them. When a task is created, the leader can choose to push the task in
the local stack or in the global task. This decision depends on the task depth in the
fork tree. Task pushed in the local stack by a leader is called a slave task. All tasks
belonging to the fork subtree of a single slave task is called a block of tasks.

The leader provides some work to its group by pushing a local task in its own
local stack. A leader detects the amount of work inside its group. If this amount is
not sufficient to exploit the group processing power, the leader provides another local
task to its group by executing a global task or stealing a global task. The amount of
work inside the group can be estimated as proposed in the CHS algorithm [33] by
sending additional messages. Another solution that can avoid such extra messages
is for the leader to detect a lack of work by evaluating the number of steal attempts
it receives.

HWS used a rigid boundary level to divide tasks into global tasks and local tasks
which are similar to inter-socket tasks and intra-socket tasks in our solution, CAB.
Different from our solution, the rigid boundary level in HWS is not adaptive.

3.2.5 CONTROLLED-PDF

The method of dividing an execution DAG into sub-DAGs for reducing cache misses
was also used in other studies. For instance, Blelloch et al. [5] proposed an online
scheduler, CONTROLLED-PDF, to reduce cache misses in single-socket multi-core
architecture.

CONTROLLED-PDF divides the nodes of a DAG intoL2-supernodes that contain
data fit for the shared L2 cache and further divided L2-supernodes intoL1-supernodes
with data fit for the private L1 cache. By executing L1-supernodes in the same L2-
supernode in parallel but executing L2-supernodes sequentially, the shared cache
misses can be reduced.

www.manaraa.com

3.2 Prior Solutions 37

Because the scheduler CONTROLLED-PDF needs users to provide space com-
plexity function of the executed program and is only applicable to single-socket
multi-core architecture, it is not practical in real-system MSMC scenario.

There are also some studies aiming at good cache performance based on other
techniques. Cache-oblivious algorithms can achieve good cache performance by
tuning the original algorithms carefully [7, 18]. Extended from the cache-oblivious
model, a parallel cache-oblivious (PCO) model was proposed in [6] to account for
costs on a broad range of cache hierarchies. Based on the PCO model, the authors
described a scheduler to balance the cost of the cache misses across the processors.
In [17], ULCC was proposed to explicitly manage and optimize last level cache usage
by allocating proper cache space for different data sets of different threads based on
a page-coloring technique. Although ULCC provides a good way to manage the last
level cache, the management is still burdensome for programming. In contrast, CAB
can improve the last level cache (L3) performance of memory-bound applications
automatically.

According to the above introduction, emerging work is not able to achieve the
best performance of work-stealing applications on MSMC architecture. To this end,
we introduce our cache-aware bi-tier work-stealing scheme in the following part of
this chapter.

3.3 Cache-Aware Bi-tier Work-Stealing

If a work-stealing scheduler can ensure tasks with shared data are scheduled to the
same socket as shown in Fig. 3.2a, the shared cache misses will be minimized and
the performance of memory-bound applications can be improved.

3.3.1 Solution Overview

In order to achieve the above scheduling, we analyze the execution of divide-and-
conquer parallel programs shown in Fig. 3.1, and get three main observations. First,
parallel tasks create child tasks recursively until the data set for each leaf task is small
enough. During the procedure, only the leaf tasks physically touch the data. Second,
neighbor tasks usually share some data. Lastly, if the parallel program is iterative, it
often works on the same data set for a large number of iterations.

Based on the above three observations, for divide-and-conquer programs,1 we
introduce the Cache Aware Bi-tier work-stealing (CAB) policy that consists of a
cache aware task graph partition policy and a bi-tier work-stealing policy. With
the cache aware task graph partition policy, CAB can divide an task graph into inter-
socket tier and intro-socket tier. With the bi-tier work-stealing scheduling policy,

1All the programs mentioned below are memory-bound divide-and-conquer parallel programs.

www.manaraa.com

38 3 Work-Stealing for Multi-socket Architecture

CAB schedules tasks in the inter-socket tier among sockets and schedules tasks in
the intra-socket tier within socket. Because neighbor tasks in intra-socket tier often
share data, the cache-aware work-stealing can better utilize the shared cache.

CAB divides an execution task graph into inter-socket tier and intra-socket tier.
For instance, as shown in Fig. 3.1, the shaded tasks divide the task graph into two
tiers. The shaded tasks are called leaf inter-socket tasks. We call ll the tasks above the
leaf inter-socket tasks, including the leaf inter-socket tasks, as inter-socket tasks; and
call the tasks in any subtree rooted with leaf inter-socket tasks as intra-socket tasks.
All the inter-socket tasks consist of inter-socket tier and all the intra-socket tasks
consist of intra-socket tier. Meanwhile, a subtree rooted with a leaf inter-socket task
is called an intra-socket subtree. For instance, in Fig. 3.1, tasks in each ellipse consist
in an intra-socket subtree. By scheduling tasks in the same intra-socket subtree within
the same socket, CAB can ensure the neighbor tasks t1 and t2 (or t3 and t4) in Fig. 3.1
to be executed in the same socket.

However, it is challenging to identify the proper leaf inter-socket tasks so that
tasks in the same intra-socket subtree will be able to efficiently utilize the shared
cache. If an intra-socket subtree is too large (contains too much tasks), the involved
data of all the tasks in the subtree could be too large to fit into the shared cache of
a socket. On the other hand, if an intra-socket subtree is too small (contains too few
tasks), the workload of the subtree can be too small to get better balanced among the
cores of the same socket.

Therefore, in order to find the proper leaf inter-socket tasks, based on runtime
information, the task graph is appropriately divided into two tiers according to the
cache aware task graph partition policy. After that, inter-socket tasks and intra-socket
tasks in the two tiers are scheduled differently using the bi-tier work-stealing schedul-
ing policy. In bi-tier work-stealing, inter-socket tasks are scheduled across sockets,
while intra-socket tasks are scheduled between cores in the same socket. Meanwhile,
in order to avoid cache pollution, CAB guarantees that a socket cannot process tasks
in multiple intra-socket subtrees concurrently. In this way, the data shared by tasks in
the same intra-socket subtree is only read into shared cache once but can be accessed
by all the tasks in the subtree.

3.3.2 Design Overview

In order to support cache-aware bi-tier work-stealing, we have built a runtime system
for CAB as follows. As shown in Fig. 3.3, for an M-socket N-core architecture, A-
CAB launches M × N workers (i.e., threads) at runtime and affiliates each worker
with one individual hardware core. For convenience of presentation, we use the term
core to mean a worker in the rest of this chapter.

In each socket, only one core is selected as the head core of the socket to look
after the inter-socket task scheduling. In CAB, we choose “core 0” in each socket as
the socket’s head core.

www.manaraa.com

3.3 Cache-Aware Bi-tier Work-Stealing 39

c0

Inter-socket
task pool Intra-socket task pools

c1

L3 shared cache

Inter-socket
task pool

c3c2

L3 shared cache

L2 cache

L1 cache

L2 cache

L1 cache

L2 cache

L1 cache

L2 cache

L1 cache

w0 w1 w2 w3

workers workers

Fig. 3.3 CAB runtime environment in a dual-socket dual-core architecture. Each socket has an
inter-socket task pool and each core has an intra-socket task pool

As shown in Fig. 3.3, in order to schedule inter-socket tasks and intra-socket tasks
in different way, CAB creates an inter-socket task pool for each socket to store inter-
socket tasks, and an intra-socket task pool for each core to store intra-socket tasks.
When a workerw in any socket ρ generates a new task t, and t is an intra-socket task, it
is pushed into the intra-socket task pool of w. Otherwise, if t is an inter-socket task, it
is pushed into the inter-socket task pool of ρ. Similar to prior work-stealing scheduler
implementations [32], in CAB, a task pool is implemented as a double-ended queue.

In cache-aware bi-tier work-stealing policy, if a worker is free, it first tries to
obtain a new task from its own intra-socket task pool. If its own intra-socket task
pool is empty, the worker tries to steal a task from the intra-socket task pools of the
workers in the same socket. If all the intra-socket task pools in its socket is empty,
the head worker of the socket tries to obtain an inter-socket task from its inter-socket
task pool. If its inter-socket task pool is empty as well, the head worker tries to steal
an inter-socket task from inter-socket task pools of other sockets.

In order to relieve the lock contention on inter-socket task pools, in our work-
stealing policy, only the head worker is allowed to steal inter-socket tasks from the
inter-socket task pools of other sockets. Meanwhile, CAB does not allow a socket
to process tasks from multiple intra-socket subtree at the same time. This is because
the intra-socket tasks from different intra-socket subtree would pollute the shared
cache, thus increase shared cache misses and degrade the performance of parallel
programs.

www.manaraa.com

40 3 Work-Stealing for Multi-socket Architecture

3.4 Cache-Aware Task Graph Partition Policy

As mentioned before, one main challenging problem in cache-aware bi-tier work-
stealing is how to properly divide an task graph into inter-socket tier and intra-socket
tier. Targeting this problem, in this section we introduce two task graph partition
policies:Full TreeOriented (FTO) partition policy, andGeneral TreeOriented (GTO)
partition policy. If a task graph is a full tree, in which all the nodes have the same
number of children nodes (except leaf node), FTO policy is applicable. Otherwise,
GTO policy is applicable. In the following subsections, we first introduce the FTO
policy, and then discuss the generalized GTO policy.

3.4.1 Full Tree Oriented Partition Policy

The full tree oriented partition policy only applies for parallel programs where the task
graphs are full tree. Because most of existing parallel divide-and-conquer programs
create tasks recursively, most of these programs’ task graphs are full tree and FTO
policies apply for them. Figure 3.4 presents a five level full binary tree task graph
(except node t0).

Because the task graph in Fig. 3.4 is a regular full binary tree, all the leaf inter-
socket tasks are in the same level of the task graph. If we can find the level where
the leaf inter-socket tasks are in (called “Boundary Level”), all the leaf inter-socket
tasks can be identified. And, these leaf inter-socket tasks divides the task graph into
inter-socket tier and intra-socket tier. For easy of description, we use Lb to represent
the boundary level.

Figure 3.5 presents the processing flow of a parallel program in CAB if FTO
partition policy is adopted to divide its task graph into two tiers. In FTO scheduling
policy, it is challenging to identify the appropriate boundary level. As shown in

Intra-socket
tier

Inter-socket
tier

Lb = 2

Main

Intra-socket
subtree

Intra-socket
subtree

Level 0

Level 3

Level 2

Level 4

Level 1 t1

t0

Fig. 3.4 An example of full binary tree task graph (except node t0)

www.manaraa.com

3.4 Cache-Aware Task Graph Partition Policy 41

Start Execute tasks EndPartition
Task Graph

Cache-aware Partition Bi-tier Work-stealing
Calculate
Boundary
Level Lb

Fig. 3.5 The processing flow of a parallel program in CAB if it adopts FTO policy to divide task
graphs

Fig. 3.4, if the boundary level is too high (e.g., level 1), the intra-socket tier contains
too many tasks. In this scenario, the involved data of an intra-socket subtree could
be too big to fit into the shared cache of a socket. On the other hand, if the boundary
level is too low (e.g., level 4), the intra-socket tier contains too few tasks. In this
scenario, the number of tasks in each intra-socket subtree is too small to balance the
workload between cores in a socket.

Therefore, an appropriate boundary level should obey three main constraints.
First, there should be enough leaf inter-socket tasks so that there are enough intra-
socket subtree to fully utilize all the sockets. Second, the involved data of each intra-
socket subtree should be small enough to fully fit into the shared cache of a socket.
Third, each intra-socket subtree should have enough tasks, so that the workload of
an intra-socket subtree can be balanced across different workers in a socket. In FTO
scheduling policy, we can use three parameters: the effective input data size, the
shared cache size of a socket, and the out degree of a task in the task graph, to find
the appropriate bound level.

In the following discussion, we assume that the program directly generates the task
of the recursive divide-and-conquer procedure in the “main” procedure, which is the
case for all our benchmarks. For example, in Fig. 3.4, the main task t0 directly spawns
task t1 that recursively spawns tasks executing itself until a cut-off point. However, if
the recursive procedure is not directly generated by “main”, we need either manual
adjustment of the Lb value, or compiler support to adjust Lb automatically.

In the model, we suppose a parallel program that has full tree task graph run
on an M-socket N-core architecture, in which each socket has shared cache of size
Sc. We further suppose the effective input data size of the program is Sd , and the
program divides the input data into B parts each time sub-tasks are generated, i.e.,
the out degree of each task in the task graph of the recursive procedure is B. In this
scenario, because every task generates B tasks for the next level and this is repeated
for Lb − 1 times until the boundary level Lb, there are BLb−1 leaf inter-socket tasks
in the boundary level. For instance, in Fig. 3.4, because the out degree of every
task B = 2, and the boundary level Lb = 2, the boundary level (level 2) contains
22−1 = 2 leaf inter-socket tasks. In other word, this program has two intra-socket
subtrees. Table 3.1 presents the parameters used in the full tree oriented partition
policy for finding the appropriate boundary level Lb.

Because there are M sockets, according to the first constraint, in order to balance
the workload between sockets, we have to guarantee there are at least M leaf inter-
socket tasks. Therefore, the boundary level Lb need to fulfill Eq. 3.1.

www.manaraa.com

42 3 Work-Stealing for Multi-socket Architecture

DLb−1 ≥ M (3.1)

Because every task equally divides its data set for sub-tasks, the data set size of
each leaf inter-socket task can be calculated as Sd/DLb−1. In order to fulfill the second
constraint (the involved data of an intra-socket subtree should be able to store in the
shared cache of a socket), the constraint can be expressed with Eq. 3.2.

Sd
DLb−1

≤ Sc (3.2)

From Eqs. 3.1 and 3.2, we can deduce two conditions for selecting an appropriate
value for boundary level Lb, as shown in Eq. 3.3.

{
Lb ≥ logD M + 1

Lb ≥ logD (Sd/Sc) + 1
(3.3)

From Eq. 3.3, we can select any Lb that is large enough to satisfy the two inequa-
tions. But, unfortunately, if Lb is too large, the number of the intra-socket tasks
generated by a leaf inter-socket task will be too small, which leads to poor load
balance within a socket. Therefore, in order to satisfy the third constraint, we set Lb
to be the smallest value that satisfies both inequations in Eq. 3.3, as shown in Eq. 3.4.

Lb = max{�logD M + 1�, �logD (Sd/Sc) + 1�} (3.4)

In the implementation of FTO partition policy, we can use a semi-automatic way
to obtain all the parameters, and then calculate the boundary level Lb using Eq. 3.4.
ParametersM and Sc are automatically acquired from “/proc/cpuinfo” by the runtime
system, D can be acquired by the compiler through program analysis, but Sd should
be provided through command line argument. Once the task graph is divided into
two tiers, a bi-tier work-stealing scheduler is used to schedule the tasks to minimize
shared cache misses.

Table 3.1 Parameters used in
the full tree oriented partition
policy

Parameters Description

Lb Boundary level

D The out degree of a task

M The number of sockets

Sd The size of input data

Sc The capacity of a socket’s
shared cache

www.manaraa.com

3.4 Cache-Aware Task Graph Partition Policy 43

3.4.2 General Tree Oriented Partition Policy

The FTO partition policy introduced in Sect. 3.4.1 has one limitation, it can only
apply for divide-and-conquer programs that have full tree task graphs. If the task
graph of a parallel program is not a full tree, the leaf inter-socket tasks could be
in different layers. In this case, FTO partition policy is not able to appropriately
divide the task graph into two tiers. For example, the FTO partition policy is not
able to divide the irregular task graph in Fig. 3.1 into two tiers appropriately. In order
to solve this problem, we introduce the general tree oriented partition policy that
works for irregular task graphs based on compiler support and information collected
dynamically at runtime.

In the General Tree Oriented (GTO) partition policy, in order to find the proper
leaf inter-socket tasks, we need first to obtain the data size involved in each task.
The GTO policy uses a profiling-based method and a compiling-based method to
obtain the size of data involved in each task for iterative programs and non-iterative
programs respectively. Based on the size of data involved in each task, the GTO
partition policy can divide the task graph into two tiers appropriately. Figure 3.6
presents the processing flow of a parallel program in CAB if GTO partition policy
is adopted to divide its task graph into two tiers.

As we present before, to partition a task graph into inter-socket tier and intra-socket
tier optimally, the most challenging problem is to find the proper leaf inter-socket
tasks. Once the proper leaf inter-socket tasks are identified, the task graph can be
easily divided into two tiers: all the tasks above the leaf inter-socket tasks (including
the leaf inter-socket tasks) belong to the inter-socket tier, and those tasks in the
subtrees rooted with leaf inter-socket tasks belong to the intra-socket tier.

In the GTO partition policy, an optimal partitioning of a task graph should satisfy
two constraints as well. The first constraint is that, for any intra-socket subtree ST ,
the involved data of all the tasks in ST is small enough to fit into the shared cache
of a socket. The second constraint is that an intra-socket subtree ST should be large
enough to allow a socket to have sufficient intra-socket tasks.

Start
Profiling-

based
technique

Execute tasks End
Partition

Task
Graph

Compiling
-based

Technique

Cache-aware Partition Bi-tier Work-stealing

Iterative programsNon-iterative programs

Calculate SOIDs
of tasks

Fig. 3.6 The processing flow of a parallel program in CAB if it adopts GTO policy to divide task
graphs. The SOID of a task is defined as the size of involved data of the task

www.manaraa.com

44 3 Work-Stealing for Multi-socket Architecture

To fulfill the two constraints when dividing a task graph, for any task t in the task
graph, we should collect its involved data size. For convenience of description, in
this chapter, we use Size Of Involved Data (SOID) to represent the involved data
size of a task t. That is, SOID includes the data accessed by all tasks in the subtree
rooted with task t. Once the SOIDs for all tasks in the task graph are known, the task
graph partitioner can divide the task graph into two tiers optimally. As stated before,
the GTO partition policy uses the profiling-based method to collect SOIDs of tasks
for iterative programs while using the compiling-based method to collect SOIDs of
tasks for non-iterative programs.

3.4.2.1 Compiling-Based SOID Calculation

In the compiling-based SOID calculation method, for any task t, we calculate its
SOID using the effective input data size of the program and the branching degree
of all its ancestors in the task graph. Note that, in the following calculation, we
still assume that a task divides its data set into several parts evenly according to its
branching degree. This assumption is true in most of existing divide-and-conquer
programs.

Suppose the effective input data size of the program is Sinput , the ancestors of
task t in the task graph are t0, t1, ..., ti whose branching degrees are B0, B1, ..., Bi

accordingly. Then, the SOID of task t, denoted by D, can be calculated with Eq. 3.5.

D = Sinput∏i
k=0 Bk

(3.5)

In Eq. 3.5, the branching degree of each task can be obtained by analyzing the task
generating pattern in the source code through the compiler. However, the effective
input data size of the application Sinput has to be provided through a command line
argument. The SOIDs of tasks are calculated in a top-down way in the compiling-
based method for non-iterative programs.

3.4.2.2 Profiling-Based SOID Calculation

For an iterative program, CAB profiles the program during the first iteration of
the execution. During the online profiling, the hardware Performance Monitoring
Counters (PMC) [3] can be used to collect cache misses, based on which the SOIDs
for all tasks are calculated. For the processors where the last level cache misses of
each core can be collected separately (e.g., Intel Xeon E5-2650 V4), the performance
counter event we can use is the last level shared cache accesses. On the other hand,
for processors which do not support the above event (e.g. AMD Quad-core Opteron
8380), we can use the last level private data cache misses. For detailed information
of the performance counter events, refer to BIOS and Kernel Developer’s Guide of

www.manaraa.com

3.4 Cache-Aware Task Graph Partition Policy 45

the corresponding processor. For instance, in AMD Quad-core Opteron 8380, we
can use the performance counter event “07Eh” with mask of “02h” to collect the last
level private data cache misses.

Though it is straightforward to collect the event statistics of the last level pri-
vate data cache misses and the last level shared cache misses in modern multi-core
machines like X86/X64 that support corresponding events, it is very tricky to calcu-
late the SOIDs of the tasks based on the collected event statistics.

First, limited by the hardware PMCs, a core can only collect the cache misses
of its own, but a task may have multiple child tasks executing on different cores.
Therefore, it is impossible to collect the overall cache misses for a task directly.

Second, it is nontrivial to relate the private cache misses on processors where
collecting per core shared cache misses is not supported, to the SOID of a task. For
a task t that runs on a core c in socket ρ, if t fails to get its data from the last level
private cache of c, it requests the data from the shared cache of ρ. Since c does
not execute other tasks when it is executing t, the last level private cache misses
of c are totally caused by t. The last level private cache misses of c can be used
to approximate to the size of data accessed by t for the following reasons. Many
memory-bound applications adopt data parallelism. As mentioned in our second
observation in Sect. 3.1.1, only the leaf tasks physically access data. The data of leaf
tasks do not have much overlapping with each other. Even when two neighbor leaf
tasks have a small portion of shared data, the chances for them to be executed in the
same core are small in a random work-stealing scheduler, which is adopted during
the profiling stage. Therefore, the above approximation is accurate enough for us to
calculate the SOIDs of all tasks.

Based on the collected last level private cache misses (or the last level shared
cache accesses) of task t, its SOID is calculated as follows. If t is a leaf task, the
number of last level private cache misses (or the last level shared cache accesses) of
task t times the cache line size (e.g., 64 bytes in AMD Quad-core Opteron 8380) is
task t’s SOID. Otherwise, if t is not a leaf task, its SOID is the sum of its last level
private cache misses (or last level shared cache accesses) times the cache line size
plus the SOIDs of all its child tasks. Given a task t with n sub-tasks t1, t2, ..., tn.
Suppose M is task t’s number of last level private cache misses (or last level shared
cache accesses) times the size of cache line, and the SOIDs of its child tasks are D1,
D2, ..., Dn respectively, then t’s SOID, denoted by D, is calculated as in Eq. 3.6.

D = M +
n∑

i=1

Di (3.6)

Based on Eq. 3.6 and Fig. 3.7 presents an example of calculating SOIDs for all
the tasks. In the figure, Di is the SOID for leaf task ti, but represents the size of data
physically accessed by the task itself for non-leaf tasks. In fact, for many memory-
bound applications, Di for non-leaf tasks is very small, if it is not zero, since non-leaf
tasks do not physically access data.

www.manaraa.com

46 3 Work-Stealing for Multi-socket Architecture

D4 D5 D6 D7 D8

D2+(D4+D5) D3+(D6+D7+D8)

...
D1+(D2+D4+D5)+
(D3+D6+D7+D8)

Return

t1

t2 t3

t4 t5 t6 t7 t8

Fig. 3.7 Calculate the Size Of Involved Data (SOID) for tasks in iterative programs

As shown in Fig. 3.7, the SOID of a task is returned to its parent task when it
complete. For example, in Fig. 3.7, task t2’s SOID is added to t1’s SOID when task t1
complete. Therefore, when all the tasks in the first iteration are completed, the SOIDs
of all the tasks can be calculated. The SOIDs of tasks are calculated in a bottom-up
way in the profiling-based method.

3.4.2.3 Task Graph Partitioning

No matter the semi-automatic compiling-based technique or the full-automatic
profiling-based technique is adopted, once the SOIDs of all the tasks are calculated,
the task graph partitioner divides the task graph into inter-socket tier and intra-socket
tier automatically.

In order to satisfy the constraints in Sect. 3.4.2, we can identify the leaf inter-
socket tasks obeying the following rules. For a task t and its parent task tp, let D
and Dp represent SOIDs of task t and tp respectively. In this scenario, t is a leaf
inter-socket task if and only if D is smaller than the size of the shared cache and Dp is
larger than the size of the shared cache. More precisely, given a task t and its parent
task tp, we can determine t’s tier as follows.

• If both Dp and D are larger than the shared cache of a socket, t is an inter-socket
task, as shown in Fig. 3.8a.

• If Dp is larger than the shared cache of a socket and D is smaller than the shared
cache of a socket, t is a leaf inter-socket task, as shown in Fig. 3.8b.

• If both Dp and D are smaller than the shared cache of a socket, t is an intra-socket
task, as shown in Fig. 3.8c.

After we determine the tiers of each and every task, the task graph has already been
divided into two tiers appropriately. Based on the partitioned task graph, we use
bi-tier work-stealing policy to schedule tasks in the task graph for optimizing shared
cache usage.

For iterative programs, in order to identify the same task in the following iterations,
during the execution of a parallel program, each task is given an identifier (a string)
according to the spawning relationship between tasks. If a task t’s identifier is S, then

www.manaraa.com

3.4 Cache-Aware Task Graph Partition Policy 47

Dp>Sc

D>Sc

tp

t

(a) t is an inter-socket task

Dp>Sc

D Sc

tp

t

(b) t is a leaf inter-socket task

Dp Sc

D<Sc

tp

t

(c) t is an intra-socket task

Fig. 3.8 Conditions that t is an inter-socket task, a leaf inter-socket task or an intra-socket task

its ith sub-task’s identifier is S_i. For example, Fig. 3.1 shows the way of constructing
identifiers for tasks. The strings beside the tasks are the identifiers in Fig. 3.1. The
identifiers of all the completed tasks are saved in a hash table with their SOIDs.
When a new task is spawned, CAB tries to find its identifier in the hash table. If
the identifier is found, it means the first iteration has completed since a new task
in the same location of the task graph has been spawned. In this case, CAB uses
the bi-tier work-stealing scheduler to schedule tasks based on their tiers which are
decided according to their SOIDs as shown above.

It is worth noting that, for iterative programs, all the needed information for
the optimal bi-tier work-stealing can be obtained automatically by the runtime sys-
tem. In this way, CAB can automatically improve the performance of iterative pro-
grams without any human intervention. In addition, for non-iterative programs, CAB
only needs users to provide the input data size of the programs while all the other
information can be obtained by the compiler automatically. In this way, CAB can
automatically improve the performance of non-iterative programs with slight human
intervention. Compared with the Full-Tree Oriented (FTO) partition policy described
in Sect. 3.4.1, the profiling-based technique and the compiling-based technique in the
GTO partition policy are adaptive to irregular and unbalanced task graphs where the
leaf inter-socket tasks do not have the same depth, because it determines the leaf
inter-socket tasks according to the SOIDs of tasks instead of the task’s depth in the
task graph. In other words, the GTO task graph partition policy can be applied to
partition more general task graphs.

3.5 Bi-tier Work-Stealing Scheduling Policy

After the task graph of a parallel program is divided into inter-socket tier and intra-
socket tier, the following bi-tier work-stealing scheduler can schedule the tasks in two
tiers in different ways accordingly. In this section, we discuss the bi-tier work-stealing
task scheduling policy that can minimize shared cache misses and thus improve the
performance of parallel programs. The task stealing policy is used by a free worker
when it tries to obtain a new task.

www.manaraa.com

48 3 Work-Stealing for Multi-socket Architecture

3.5.1 Work Stealing Algorithm

When a parallel program starts to run, the runtime system first decides which policy
can be used to schedule the program. There are three cases where different algorithms
are used to schedule tasks.

• First, if the FTO policy (Sect. 3.4.1) is used to partition the task graph, each worker
uses bi-tier work-stealing policy to schedule the tasks.

• Second, if the GTO policy (Sect. 3.4.2) is used instead and the parallel program is
iterative, its task graph has not been divided into two tiers during the first iteration.
Therefore, in the first iteration, workers adopt traditional random work-stealing
policy to obtain or steal a new task. In the following iteration, each worker adopts
a bi-tier work-stealing algorithm to schedule tasks so that tasks in a subtree rooted
with a leaf inter-socket task are scheduled to the same socket.

• Third, if the GTO policy (Sect. 3.4.2) is used to partition task graph and the program
is a non-iterative program, each worker directly adopts the bi-tier work-stealing
algorithm to schedule tasks.

When a parallel program is launched, a command line argument can be used to
indicate whether a program is iterative or not. Because the details of the traditional
random work-stealing policy has already been introduced in Sect. 2.2.2.2, we only
present the bi-tier work-stealing policy here.

In CAB runtime system, when a worker w affiliated with a core in socket ρ

completes its current task and becomes free, it first tries to obtain a task from its own
intra-socket task pool. If its intra-socket task pool is empty, w tries to steal a task
from the intra-socket task pools of other workers in ρ. As we described in Sect. 3.3.2,
in each socket, we choose one of the worker as the header worker of the socket. If the
intra-socket task pools of all the workers in socket ρ are empty, the head worker of
ρ tries to obtain a task from its inter-socket task pool. If its inter-socket task pool is
empty as well, the head worker tries to steal an inter-socket task from other sockets.

The above task stealing algorithm should obey two constraints. First, only the
head worker of each socket can steal inter-socket tasks. If all the free workers can
steal inter-socket tasks, the lock contention of the inter-socket task pools is too heavy
which in turn degrades the performance of parallel programs. Second, workers in the
same socket are not allowed to execute tasks in different intra-socket subtrees at the
same time. This policy can avoid the situation where different intra-socket subtrees
pollute the shared caches with different data sets. The downside of the policy is that
some workers in a socket may be idle waiting for other workers to finish their tasks.
An alternative policy is to allow a socket to execute tasks from more than one intra-
socket subtrees at the same time. This alternative policy can ensure most cores are
busy, but different intra-socket subtrees may pollute the shared caches, which leads
to more cache misses. For the memory-bound applications that CAB is targeting,
the cache misses are more critical to the performance according to our experimental
results. Therefore, we have adopted the first policy in CAB.

In order to fulfill the above two constraints, we use a boolean variable busy_state
in each socket to indicate whether there is an inter-socket task running in the socket.

http://dx.doi.org/10.1007/978-981-10-6238-4_2

www.manaraa.com

3.5 Bi-tier Work-Stealing Scheduling Policy 49

Start

w tries to obtain a new
task from its own task

pool

Success?

busy_state=1?

w tries to steal a task from
a randomly chosen worker

in its socket

w tries to obtain an inter-
socket task from the inter-

socket task pool of ρ

Success?

w tries to steal an inter-
socket task from a

randomly chosen socket

Success?

Success?

w starts to execute the new task

N
Y

Y
N

Y

N
Y

N

Y

Y
N

N

Obtain an intra-socket task Obtain an inter-socket task

w sets busy_state=1

w is head worker of ρ?

First Iteration?

w tries to obtain a new
task from its own task

pool

Y

N

Bi-tier Work-stealing

w tries to steal a task
from a randomly chosen

worker

Success?

Success?

N

N

Traditional Random Work-stealing

FTO Policy?

Y

Y

N

Y

Fig. 3.9 The flow chart of the bi-tier task stealing algorithm in CAB. In the left-most part, if CAB
uses GTO method to partition task graph and it is the first iteration of the program, CAB uses the
traditional work-stealing to schedule the program. If it is not the first iteration of the program, in
the middle part, a worker tries to obtain/steal an intra-socket task from workers in its socket. In the
right-most part, the header worker in the socket tries to obtain/steal an inter-socket task

If a socket obtains or steals an inter-socket task successfully, its busy_state is set
true (1). Once the socket finishes its inter-socket task, its busy_state is set false (0).
Only if busy_state is false, should the socket obtain or steal another inter-socket
task. Suppose w is a worker in a socket ρ, and w is free and trying to get a new task.
Figure 3.9 shows the detailed bi-tier work-stealing algorithm used by a free worker
w in socket ρ.

3.5.2 Task Generating Algorithm

In CAB runtime system, inter-socket tasks and intra-socket tasks can be generated in
different policies. Generally speaking, two types of task-generating policies, child-
first and parent-first, can be adopted for work-stealing. Figure 3.10 shows how Algo-
rithm 1 is executed with the child-first and the parent-first policy. In the figure,
the solid arrows represent the spawn operations, the dashed arrows represent the

www.manaraa.com

50 3 Work-Stealing for Multi-socket Architecture

t1

t2 t3

t4 t5 t6 t7

t1

t2 t3

t4 t5 t6 t7

(a) Child-first Policy (b) Parent-first Policy

2

3
4

5
6

7

8

9

10

11

12

13

Spawn
Return

2 3

4 5 6 7
8 9

10

11 12

13

main

oofoof

foo foo foo foo foo foo foo foo

oofoof

main

foo foo

t0 t0

411411

Fig. 3.10 Child-first policy verses Parent-first policy

return operations; and the number by side of each arrow is the order the operation is
processed.

As shown in Fig. 3.10a, in the child-first policy, a worker executes the child task
immediately after the child is spawned, leaving the parent task for later execution or
for stealing by other cores. For instance, if child-first policy is adopted, the worker
that executes t1 immediately starts to execute t2 when t2 is spawned by t1, and the
worker immediately execute t4 when it is spawned by t2. In this way, if there is a single
worker, the tasks are executed in the sequence of “t0 → t1 → t2 → t4 → t5 → t3 →
t6 → t7”. Child-first policy is similar to the depth-first traversal of the task graph.
For example, MIT Cilk uses the child-first policy, aka. work-first in [8]. Child-first
policy works better when the steals are infrequent due to the light overhead [21].

As shown in Fig. 3.10b, in the parent-first policy, a worker continually executes
the parent task after spawning a child task, leaving the child task for later execution or
for stealing by other cores. For instance, if parent-first policy is adopted, the worker
that executes t1 continues to execute t1 after spawned t2. In this way, if there is a single
worker, the tasks are executed in the sequence of “t0 → t1 → t2 → t3 → t4 → t5 →
t6 → t7”. Parent-first policy is similar to the breadth-first traversal of the task graph.
One example of the parent-first policy is the help-first policy described by Guo et
al. [21]. Parent-first policy works better when the steals are frequent and the task
graph is shallow [21], because the policy can quickly generates a large amount of
tasks that can be distributed across cores.

Both the child-first and the parent-first task generating policies have their advan-
tages and disadvantages. CAB uses both of the two policies in different situations
to best utilize their advantages. In CAB, for an iterative program, during its first
iteration, tasks have not been divided into inter-socket tasks and intra-socket tasks.
For the convenience of collecting SOID, CAB adopts the parent-first policy in the
first iteration. After the task graph has been divided into two tiers, CAB generates
inter-socket tasks with the parent-first policy and generates intra-socket tasks with
the child-first policy. CAB adopts the parent-first policy for generating inter-socket
tasks so that leaf inter-socket tasks can be generated as soon as possible. The parent-
first policy is more efficient in this case because inter-socket tasks take short time
and thus are frequently stolen. On the other hand, CAB adopts the child-first policy

www.manaraa.com

3.5 Bi-tier Work-Stealing Scheduling Policy 51

to generate intra-socket tasks. The child-first policy works better in this case because
the leaf tasks take longer time and thus the steals are infrequent. Also the child-first
policy is more space efficient.

3.6 Theoretical Time and Space Bounds

In this section, we discuss the theoretical time bound and space bound of executing
a parallel program, when it scheduled by CAB runtime system. In the following
discussion, we model the execution of a parallel program as the traversal of a task
graphG. Each node inG represents a unit task, and each edge represents a dependence
between tasks.

3.6.1 Theoretical Bounds for Random Work-Stealing

The time and space bounds for random work-stealing have been proved by Blumofe
et al. [9]. According to their discussion, for a task graph G, the work T1(G) is the
number of nodes in G, and the critical-path length T∞(G) is the number of nodes
along the longest path from the start node to the end node.

For such task graph G, the time bound of executing G on a P-core computer,
denoted by TP(G) can be calculated by Eq. 3.7. The work T1 is the number of unit
tasks in the task graph, and the critical path length T∞ is the number of nodes along
the longest path from the start node to the end node.

TP(G) ≤ T1(G)

P
+ T∞(G) (3.7)

For the same task graph G, the space used by G on a P-core computer, denoted
by SP(G) can be calculated by Eq. 3.8. In this equation, S1(G) is the space used by
the program when it is executed sequentially.

SP(G) ≤ S1(G) × P (3.8)

If you are interested in understanding the details of the provement, please refer to
the prior work [9]. The following discussion is based on the time and space bounds
of the random work-stealing.

www.manaraa.com

52 3 Work-Stealing for Multi-socket Architecture

Table 3.2 Parameters used in the bound analysis

Parameters Description

Gγ The subtree rooted at task γ in G

m Number of sockets

n Number of cores per socket

c Number of overall cores (m × n)

T1(G) The total number of nodes in G

T∞(G) The critical-path length of G

TP(G) Makespan of G on a P-core computer

TP(Ginter) Makespan of the inter-socket tier

TP(Gintra) Makespan of the intra-socket tier

SP(G) Space used by G on a P-core computer

3.6.2 Theoretical Bounds for CAB

Based on the time and space bounds of the traditional random work-stealing, we can
analyze the time and space bounds of the cache-aware bi-tier work-stealing, CAB.
Table 3.2 lists the parameters that are used to analyze G’s time and space bounds.

3.6.2.1 Time Bound Analysis

Since A-CAB divides a DAG into two tiers and executes them differently, we need
to divide a DAG into sub-DAGs using the leaf inter-socket tasks. Given a leaf inter-
socket task t, we use the notation Gt to represent the subtree rooted with t, which
includes the set of tasks that are generated from t. Therefore, the total work of G is
divided as in Eq. 3.9, where Ginter represents the subgraph of the inter-socket tier and
k is the total number of leaf inter-socket tasks.

T1(G) = T1(Ginter) +
k∑

i=1

T1(Gti) (3.9)

The execution time of G in an M-socket N-core architecture, TM×N (G), can be
divided into two parts: the execution time of the inter-socket tier TM×N (Ginter) and
the execution time of the intra-socket tier TM×N (Gintra). Even though the two parts
can be overlapped, we use their sum to get the worst bound of TM×N (G) as shown
in Eq. 3.10.

TM×N (G) = TM×N (Ginter) + TM×N (Gintra) (3.10)

Since the inter-socket tier is executed by M head cores using work-stealing,
according to the proof of [9], the execution time of Ginter is bounded by Eq. 3.11.

www.manaraa.com

3.6 Theoretical Time and Space Bounds 53

TM×N (Ginter) ≤ T1(Ginter)

M
+ T∞(Ginter) (3.11)

For the execution of the intra-socket tier, each Gti is executed by N cores within
a socket using work-stealing. Therefore, the execution time of Gti is bounded by
Eq. 3.12.

TN (Gti) ≤ T1(Gti)

N
+ T∞(Gti) (3.12)

Since k leaf inter-socket tasks are scheduled among M sockets using work-
stealing, the execution time of the intra-socket tier is bounded by Eq. 3.13.

TM×N (Gintra) ≤
∑k

i=1 TN (Gti)

M
+ T∞(Gintra) (3.13)

Deducing from Eqs. 3.12 and 3.13, we can get Eq. 3.14.

TM×N (Gintra) ≤
∑k

i=1 T1(Gti)

M × N
+

∑k
i=1 T∞(Gti)

M
+ T∞(Gintra) (3.14)

From Eqs. 3.10, 3.11 and 3.14, TM×N (G) can be bounded as in Eq. 3.15.

TM×N (G) ≤T1(Ginter)

M
+ T∞(Ginter) +

∑k
i=1 T1(Gti)

M × N
+∑k

i=1 T∞(Gti)

M
+ T∞(Gintra)

(3.15)

After further tidying Eq. 3.15 up, we have Eq. 3.16.

TM×N (G) ≤T1(Ginter)

M
+ T1(Gintra)

M × N
+

∑k
i=1 T∞(Gti)

M
+ T∞(G) (3.16)

Our experiments show that the execution time of the inter-socket tier is often less
than 5% of the overall execution time. Therefore, the time bound of Eq. 3.16 is very
close to the traditional random work-stealing schedulers such as MIT Cilk for many
D&C applications.

3.6.2.2 Space Bound Analysis

According to the proof of [9], the space used byG in anM-socketN-core architecture
is bounded by Eq. 3.17, where S1(G) denotes the space used by the serial execution
of the program.

SM×N (G) ≤ M × N × S1(G) (3.17)

www.manaraa.com

54 3 Work-Stealing for Multi-socket Architecture

Equation 3.17 assumes that there are at most M × N workers expanding the DAG
using the child-first policy. However, since A-CAB uses the parent-first policy to
expand the inter-socket tier quickly, each of the leaf inter-socket tasks may use S1

space in the worst case. Therefore, the space used by the A-CAB scheduler SM×N (G),
can be bounded as in Eq. 3.18.

SM×N (G) ≤ max{k × S1(G),M × N × S1(G)} (3.18)

3.7 Implementation Methodology

CAB runtime system can be implemented in existing work-stealing programming
environments. Without loss of generality, in the book, we use MIT Cilk that is one of
the earliest work-stealing programming environments, as the baseline and implement
CAB by modifying MIT Cilk. In this section, we first introduce the compiler support
of CAB, including the support for FTO and GTO task graph partitioning techniques.
After that, we discuss the runtime support for CAB. It is worthing noting that, Cilk
programs can run in CAB runtime system without any modification.

3.7.1 Compiler Support

The compiler is modified to support both the parent-first and the child-first task-
generating policy.

3.7.1.1 Support for FTO Task Graph Partition Technique

As we presented in Sect. 3.4.1, in the FTO task graph partition technique, a boundary
level Lb is used to divide a task graph into two tiers. Therefore, when a new task is
spawned, we first compare its level in the task graph L with the boundary level Lb.
If L ≤ Lb, then the task is in the inter-socket tier. In this case, the task is generated
using parent-first policy. On the contrary, if L > Lb, the task is in the intra-socket
tier and it is generated using child-first policy. Meanwhile, because inter-socket tasks
and intra-socket tasks are generated in different policies, we modified the source-to-
source compiler, Cilk2c, to support the two types of sync.

3.7.1.2 Support for GTO Task Graph Partition Technique

For a non-iterative program, at each spawn, if the to-be-spawned task’s SOID is
smaller than the size of the shared cache, CAB spawns the task with the child-
first policy and pushes the task into the intra-socket task pool of the current core.

www.manaraa.com

3.7 Implementation Methodology 55

Otherwise, CAB spawns the task with the parent-first policy and pushes the task
into the inter-socket task pool of the current socket. For an iterative program, at each
spawn, CAB finds out whether the spawn happens in the first iteration of the program.
If it is in the first iteration, the to-be-spawned task is spawned with the parent-first
policy. Otherwise, the to-be-spawned task is spawned and scheduled in the same way
as the tasks in non-iterative program.

Since the compiling-based method needs the branching degrees of all the tasks,
we have also modified cilk2c to acquire them by analyzing the source code based
on the keyword spawn. Additionally, for non-iterative programs, we have further
modified cilk2c to insert instructions that compute and record the SOID of each and
every task according to Eq. 3.5 when the task is spawned.

3.7.2 Runtime Support

If a parallel program runs on an M-socket architecture, in which each socket has
N-cores, CAB runtime system launches M × N workers and affiliates each worker
with an individual hardware core. For each socket, the worker that affiliated with
core “0” is the header worker of the socket. The worker is responsible to balance the
workload among different sockets.

Table 3.3 gives the algorithm used to schedule tasks in a parallel program in CAB
runtime system. Note that, before CAB starts to schedule the tasks in a parallel
program, we already know the task graph is to be divided into two tiers using FTO
policy or GTO policy, and know whether the program is iterative or non-iterative.

3.8 Evaluation of CAB

In this section, we use a Dell 16-core computer that has four AMD Quad-core Opteron
8380 processors (codenamed “Shanghai”) running at 2.5 GHz to evaluate the perfor-
mance of CAB runtime system. Each Quad-core socket has a 512 K private L2 cache
for each core and a 6M L3 cache shared by all four cores. The computer has 16GB
RAM and runs Linux 2.6.29. Accordingly, CAB sets up four workers in each socket.

In this chapter, we described two policies: FTO policy and GTO policy to divide
a task graph into two tiers. In this section, we evaluate the performance of the two
policies in CAB runtime system. For easy of description, we use CAB-FTO to rep-
resent the CAB runtime system that employs FTO task graph partition policy; and
use CAB-GTO to represent the CAB runtime system that employs GTO task graph
partition policy. In Sects. 3.8.1 and 3.8.2, we present evaluation results for CAB-FTO
and CAB-GTO respectively.

As described earlier, in CAB runtime system, each worker thread is affiliated
with a hardware core. Our experiment shows that affiliating workers with cores can
improve the performance of memory-bound applications in CAB (shown in Figs. 3.11

www.manaraa.com

56 3 Work-Stealing for Multi-socket Architecture

Table 3.3 CAB runtime algorithm

Assumption: Suppose an M-socket and N-core architecture and a worker w belongs to a socket
ρ.

Global initiation:

Step 1: CAB launches M × N workers and affiliates them to the corresponding hardware cores

Step 2: CAB identifies which policy (either FTO policy or GTO policy) is to be used divided the
task graph into inter-socket tier and intra-socket tier

Step 3: If FTO policy is used, CAB calculates the boundary level Lb. If M equals 1, CAB sets Lb
to 0. Otherwise, CAB calculates Lb according to Eq. 3.4

Step 4: Worker 0 begins to execute the initial task, while all the other workers are trying to steal
tasks

Task scheduling: Assume worker w in socket ρ is executing task t.

(a) t generates t1:

1©. If FTO policy is adopted, task t first calculates which level task t1 is in. If t1 is in
inter-socket tier, it is an inter-socket task. In this case, w pushes t1 into the inter-socket task pool
of socket ρ, and continues to execute task t. On the other hand, if t1 is in intra-socket tier, it is an
intra-socket task. In this case, w pushes t1 into the intra-socket task pool of w, and starts to
execute task t1 immediately

2©. If GTO policy is adopted and the program is non-iterative, t calculates the SOID of task
t1 according to Eq. 3.6, identifies which level t1 is in, and executes tasks as described in 1©

3©. If GTO policy is adopted and CAB is executing the first iteration of an iterative program,
then w pushes the task t1 into the inter-socket task pool of ρ, and continues to execute task t

4©. If GTO policy is adopted and CAB is executing the following iterations of a program, t
searches the SOID of t1, identifies which tier t1 is in, and executes tasks as described in 1©

(b) t suspends: w tries to obtain a task according to the algorithm described in Fig. 3.9

(c) t returns: w returns the results of t and sets busy_state of ρ to false if t is an inter-socket
task. Then w tries to get a task according to the algorithm described in Fig. 3.9

Termination: If all the tasks have finished, sCAB terminates

and 3.17). In the default MIT Cilk, the workers are not affiliated with hardware cores.
For the fairness of comparison, Therefore, we have modified the MIT Cilk (denoted
as Cilk for short) to affiliate each worker with a hardware core (denoted as Cilk-a for
short).

In all of our experiments, Cilk-a uses the pure child-first policy to spawn and
schedule tasks, while CAB-FTO and CAB-GTO flexibly use both the child-first and
parent-first policies to achieve the best performance. We implement the evaluated
work-stealing runtime schedulers based on MIT Cilk. The MIT Cilk programs run
with Cilk-a, CAB-FTO, and CAB-GTO without any modification. All benchmarks
are compiled with “cilk2c -O2”, which is based on gcc 4.4.3. Furthermore, for each
test, every benchmark is run ten times, and the average execution time is used in the
final results.

www.manaraa.com

3.8 Evaluation of CAB 57

3.8.1 Performance of CAB-FTO

Table 3.4 lists the benchmarks used to evaluate the performance of CAB-FTO.
Because CAB-FTO only works for parallel programs that have full tree task graphs,
the task graphs of all the memory-bound benchmarks in Table 3.4 are full tree-shaped.
In Sect. 3.8.2, benchmarks that have irregular task graphs are used to evaluate the
performance of CAB-GTO that works for general applications.

3.8.1.1 Performance of CAB-FTO for Memory-Bound Programs

Figure 3.11 presents the normalized execution time of memory-bound benchmarks
with a 1024 × 1024 matrix as input dataset in Cilk-a, Cilk, and CAB-FTO. Observed
from the figure, CAB-FTO significantly improves the performance of memory-bound
benchmarks compared with Cilk and Cilk-a, while the performance improvements
ranges from 10 to 55%. As shown in Fig. 3.11, because Cilk-a always performs
better than Cilk in our experiment, only the performance of Cilk-a and CAB-FTO is
compared in the following chapter.

The main reason that CAB-FTO can improve the performance of memory-bound
programs is that CAB-FTO relieves the TRCI problem described in Sect. 3.1.1.
Table 3.5 lists the L2 cache (private) misses and L3 cache (shared) misses of the
memory-bound programs in Cilk-a, and CAB-FTO. From the table, we can find that
CAB-FTO can significantly reduce both the L2 cache misses and L3 cache misses.
This is mainly because CAB-FTO schedules the tasks that share data into the same
socket, and the dataset of the tasks running in the same socket can fit in the L3 cache
of a socket. On the contrary, because Cilk-a randomly schedules tasks to the work-
ers, it increases the memory footprint and thus increase the L3 shared cache misses.

Table 3.4 Benchmarks used to evaluate CAB-FTO

Name Type Description

Queens(20) CPU-bound N-queens problem

FFT CPU-bound Fast fourier transform

CK CPU-bound Rudimentary checkers

Cholesky CPU-bound Cholesky decomposition
algorithm

Heat Memory-bound Five-point heat distribution
algorithm

SOR Memory-bound Successive over-relaxation

GE Memory-bound Gaussian elimination
algorithm

Mergesort Memory-bound Mergesort on 1024 × 1024
Integers

www.manaraa.com

58 3 Work-Stealing for Multi-socket Architecture

Fig. 3.11 The normalized
execution time of
memory-bound benchmarks
with a 1024 × 1024 matrix
as the input dataset in Cilk-a,
Cilk, and CAB-FTO

Table 3.5 L2 cache misses and L3 cache misses of memory-bound benchmarks in Cilk-a and
CAB-FTO

Scheduler GE Mergesort Heat SOR

L2 cache
misses

Cilk-a 4203604 5717785 8457899 14134418

CAB-FTO 2617207 3448768 5577723 10863876

L3 cache
misses

Cilk-a 1545310 1974802 2812464 5259771

CAB-FTO 180145 998605 755786 1256203

Because CAB-FTO reduces the cache misses of benchmarks compared with Cilk-a,
it performs much better than Cilk-a.

3.8.1.2 Effectiveness of the FTO

In the FTO task graph partition policy (Sect. 3.4.1), the boundary level Lb, which
divides a task graph into two tiers, is calculated using user-provided parameters. In
this subsection, we use benchmark Heat to evaluate the effectiveness of calculating
the boundary level Lb using Eq. 3.4. Since other benchmarks show similar results,
we only present the experimental results of Heat here.

In this experiment, we evaluate the performance of Heat with all possible Lb
values. Since Heat divides the input dataset into two parts each time sub-tasks are
generated until the data size smaller than 64 rows, there are fewer possible Lb values
when the input datasets are small.

Figure 3.12 shows the execution time of Heat with different input dataset size and
all possible Lb value. For instance, when the input dataset is a 3k × 2k matrix of
double, there are 8 levels (0–7) in the task graph of Heat. In addition, because each
item in the matrix is 8 bytes and Heat uses two copies of the input matrix, the over-
all input dataset size is 3072 × 2048 × 8 × 2 = 96MB. According to Eq. 3.4, the
boundary level Lb = max{�log2 4 + 1�, �log2 (96MB/6MB) + 1�} = 5. Observed
from Fig. 3.12, when the input dataset is a 3k × 2k matrix, Heat achieves the best
performance when Lb = 5. The Lb values calculated for other data sizes are the ones

www.manaraa.com

3.8 Evaluation of CAB 59

Fig. 3.12 Impact of Lb on
the performance of Heat
with different input dataset
size. The FTO task graph
partition method can find the
best value for Lb

with the best performance as well according to Fig. 3.12. This proves the effectiveness
of Eq. 3.12 and the FTO task graph partition method.

Note that, for larger data sizes, when Lb is smaller than three, the performance of
CAB-FTO is poor. This is because, when Lb is small, there are only a small number of
leaf inter-socket tasks. In this situation, workload is not balanced well in CAB-FTO,
because it may not utilize all the sockets due to the lack of inter-socket tasks. One
such extreme case is when Lb = 1, there is only one leaf inter-socket task, and thus
only workers in one socket can get the task.

On the other hand, if Lb is too large (e.g., > 5), each leaf inter-socket task only
contains a small number of intra-socket tasks. In this situation, the workload within
a socket cannot be balanced well in CAB-FTO. For instance, for Lb = 7 in the case
of 3k × 2k, leaf inter-socket tasks are in level 7 and do not generate any intra-socket
tasks. In this case, there is only one worker contributing to the performance of every
socket.

3.8.1.3 Scalability of CAB-FTO

The size of input dataset affects the performance of memory-bound programs in
CAB-FTO. If the input dataset is large, the performance improvement in CAB-
FTO is relatively small. In this experiment, we use benchmarks Heat and SOR as
examples to evaluate the scalability of CAB-FTO. Experiments on other memory-
bound benchmarks show similar results.

Figure 3.13 shows the performance of Heat and SOR with different input dataset
size. Observed from this figure, forHeat, when the input dataset is small (512 × 512),
the performance of Heat is improved by 54.6%; but when the input dataset is large
(4k × 4k), the improvement drops to 14%. Meanwhile, for SOR, when the input
dataset is small (512 × 512), the performance of SOR is improved by 68.7%; but
when the input dataset is large (4k × 4k), the improvement drops to 13.6%.

One reason for the diminishing improvement is that, with the increasing input
data sizes, the shared data set between intra-socket tasks becomes relatively smaller,
which increases the proportion of non-shared data and the cache misses in the leaf
inter-socket tasks. Figure 3.14 shows the shared cache misses of Heat and SOR with
different input dataset size. Observed from the figure, CAB-FTO can reduce 68.2%

www.manaraa.com

60 3 Work-Stealing for Multi-socket Architecture

Fig. 3.13 Performance of
heat and SOR with different
input dataset size

(a) Heat

(b) SOR

shared cache misses when the input dataset is small, and reduce 10.6% shared cache
misses when the input dataset is large, compared with Cilk-a.

Another reason for the diminishing improvement is that, when the input dataset
is large, the granularity of the leaf tasks becomes large, which results in fewer intra-
socket tasks in an intra-socket subtree and it is not good for load balance within a
socket.

3.8.1.4 Performance of CAB-FTO for CPU-Bound Programs

Because the main purpose of CAB-FTO is to relieve the TRICI problem for memory-
bound programs, CPU-bound programs cannot achieve better performance in CAB-
FTO compared with Cilk-a. For a CPU-bound program, CAB-FTO can use traditional
random work-stealing policy to schedule the tasks. In the implementation of CAB-
FTO, by setting the boundary level Lb = 0, random work-stealing policy is adopted
to schedule tasks.

Figure 3.15 shows the performance of CPU-bound benchmarks in Table 3.4 in
Cilk-a and CAB-FTO. Observed from the figure, in most cases, the extra-overhead
caused by CAB-FTO is between 1 to 2% of the overall execution time, which is often
negligible.

www.manaraa.com

3.8 Evaluation of CAB 61

Fig. 3.14 L3 shared cache
misses of heat and SOR in
CAB-FTO and Cilk-a

(a) Heat

(b) SOR

Fig. 3.15 The normalized
execution time of
CPU-bound benchmarks in
Cilk-a, and CAB-FTO

3.8.2 Performance of CAB-GTO

Similar to Sect. 3.8.1, we also use memory-bound benchmarks to evaluate the per-
formance of CAB-GTO. CPU-bound benchmarks are used to measure the extra
overhead of CAB-GTO compared with random work-stealing.

In order to evaluate the performance of CAB-GTO in different scenarios, we use
benchmarks that have both regular (full tree-shaped) and irregular task graphs in
the experiments. Table 3.6 lists the benchmarks used to evaluate the performance
of CAB-GTO. Since we can configure the iteration number of the memory-bound

www.manaraa.com

62 3 Work-Stealing for Multi-socket Architecture

Table 3.6 Benchmarks used to evaluate CAB-GTO

Name Type Description

Mandelbrot (MB) CPU-bound Calculate mandelbrot set

Queens (15) CPU-bound N-queens problem

FFT CPU-bound Fast fourier transform

GA CPU-bound Island Model of Genetic
Algorithm

Knapsack CPU-bound 0–1 knapsack problem

Heat Memory-bound Five-point heat

Heat-ir Memory-bound Five-point heat (irregular)

SOR Memory-bound Successive over-relaxation

SOR-ir Memory-bound Successive over-relaxation
(irregular)

GE Memory-bound Gaussian elimination

GE-ir Memory-bound Gaussian elimination
(irregular)

.........

Main

heat

heat2 heat

heat heat heat2 heat heat heat

Fig. 3.16 The task graph of the program in Algorithm 3. This task graph is an irregular non-full
tree

benchmarks, we can evaluate the compiling-based method for non-iterative programs
by adjusting the benchmarks to run only one iteration.

Heat-ir, GE-ir and SOR-ir implement the same algorithm as Heat, GE and SOR
respectively, except their task graphs are unbalanced trees. For example, we imple-
ment Heat-ir in Algorithm 3. According to the algorithm, the branching degree of
tasks created from cilk procedure heat is 2 while the branching degree of tasks
created from cilk procedure heat2 is 4. Figure 3.16 shows the task graph of the pro-
gram in Algorithm 3. Obviously, the task graph is irregular. GE-ir and SOR-ir are
implemented in the similar way.

www.manaraa.com

3.8 Evaluation of CAB 63

Algorithm 3 The source code skeleton of Heat-ir.
cilk void heat (int start, int end) {

if(end-start < threshold) {
Process data ;

} else {
int mid = (start + end) / 2;
spawn heat2 (start, mid);
spawn heat (mid, end);
sync;
return;

}
}
cilk void heat2 (int start, int end) {

if(end-start < threshold) {
Process data ;

} else {
int quad = (end - start) / 4;
spawn heat (start, start + quad);
spawn heat (start + quad, start + 2*quad);
spawn heat2 (start + 2*quad, start + 3*quad);
spawn heat (start + 3*quad, end);
sync;
return;

}
}
cilk int main (int start, int end) {

...
spawn heat (start, end);
sync;
...
return 0;

}

3.8.2.1 Performance of CAB-GTO for Memory-Bound Benchmarks

Iterative memory-bound benchmarks. We first evaluate the performance of CAB-
GTO for iterative memory-bound parallel programs. Figure 4.10 shows the per-
formance of memory-bound benchmarks in Cilk, Cilk-a and CAB-GTO with a
1024 × 512 matrix as the input data. For GE and GE-ir, the used input data is a
1024 × 1024 matrix due to the algorithm requirement. All the benchmarks consist
of 200 iterations in this experiment. Since the benchmarks are iterative, CAB-GTO
adopts the profiling-based method to calculate the SOIDs of tasks at the first iteration
of the benchmarks.

As we can see from Fig. 3.17, CAB-GTO with the profiling-based method can
significantly improve the performance of iterative memory-bound benchmarks com-
pared to Cilk-a while the performance improvement ranges from 35.3 to 74.4%. On
average, the performance improvement is up to 43.7% compared with Cilk-a.

http://dx.doi.org/10.1007/978-981-10-6238-4_4

www.manaraa.com

64 3 Work-Stealing for Multi-socket Architecture

Fig. 3.17 The performance
of iterative memory-bound
benchmarks in Cilk-a, Cilk
and CAB-GTO

Table 3.7 Cache misses in Cilk-a and CAB-GTO (×1E6)

Benchmark Scheduling
system

L1 cache miss L2 cache miss L3 cache miss

GE Cilk-a 60.8 58.8 14.5

CAB-GTO 53.9 50.3 2.94

GE-ir Cilk-a 37.2 37.1 10.7

CAB-GTO 23.9 20 2.15

Heat Cilk-a 82.7 79.6 24.8

CAB-GTO 71.1 67.5 5.9

Heat-ir Cilk-a 82.2 78.7 29.7

CAB-GTO 71.3 67.6 3.72

SOR Cilk-a 88.5 85 29.6

CAB-GTO 70.7 66.2 4.75

SOR-ir Cilk-a 89.8 85.5 30.7

CAB-GTO 73.6 67.4 8.27

Similar to Sect. 3.8.1, in order to explain why CAB-GTO can improve the per-
formance of iterative memory-bound programs compared with Cilk-a, we collect
the cache misses of all the benchmarks and list them in Table 3.7. Observed from
the table, we can find that the shared cache (L3) misses are prominently reduced
while the private cache (L1 and L2) misses are also slightly reduced in CAB-GTO
compared with Cilk-a. Since CAB-GTO schedules tasks with shared data into the
same socket, the shared cache misses have been significantly reduced.

Although scheduling tasks with shared data to the same socket only reduces the
shared L3 cache misses, the affiliation of an intra-socket subtree with a socket in
CAB-GTO can help reduce the private L1 and L2 cache misses slightly. In CAB-
GTO, for a task ti in an intra-socket subtree, if it is executed by core c in socket
ρ, its neighbor tasks (i.e., ti−1 and ti+1) are also executed by c as well unless they
are stolen by other cores in ρ. Compared with random work-stealing where any free
cores can steal ti’s neighbor tasks, there are fewer cores that can steal ti’s neighbor
tasks in CAB-GTO. Therefore, the probability that neighbor tasks are executed by

www.manaraa.com

3.8 Evaluation of CAB 65

Fig. 3.18 SOIDs of tasks in
Heat with a 1024 × 512
matrix as input data

Fig. 3.19 The performance
of non-iterative
memory-bound benchmarks
in Cilk-a, Cilk and
CAB-GTO

the same core is larger in CAB-GTO. For this reason, the private cache (e.g., L1 and
L2) misses have also been slightly reduced in CAB-GTO.

Take benchmark Heat with a 2048 × 512 matrix as input data as an example.
Figure 3.18 shows the SOIDs of tasks in Heat that are calculated with Eq. (3.6).
The real involved data size of tasks in Fig. 3.18 are shown in the circles. Since Heat
uses two matrices of “double” during the execution, the overall input data size is
2048 × 512 × 8 × 2 = 16 MB. Then the real data set is evenly divided every time
when the tasks are spawned. From the figure, we can find that the calculated SOIDs
are close to the real involved data sizes, which shows the profiling-based method is
reasonably accurate.

Non-iterative memory-bound benchmarks. We evaluate the performance of
CAB-GTO for non-iterative memory-bound parallel programs. Figure 3.19 shows
the performance of non-iterative benchmarks in Cilk, Cilk-a and CAB-GTO. We
create the non-iterative benchmarks by setting their iteration number as 1. CAB-GTO
adopts the compiling-based method to calculate the SOIDs of tasks for non-iterative
programs.

With the compiling-based method, CAB-GTO significantly improves the perfor-
mance of non-iterative memory-bound applications compared to Cilk-a while the
performance improvement ranges from 22.3 to 55.1%. On average, the performance
improvement is up to 38.1% compared with Cilk-a. Same as iterative benchmarks,
the good performance of non-iterative applications in CAB-GTO origins from the
reduced shared cache misses as well.

www.manaraa.com

66 3 Work-Stealing for Multi-socket Architecture

From Figs. 3.17 and 3.19 we can find that Cilk-a provides much better performance
compared with Cilk for all the benchmarks. For memory-bound applications, the
better performance in Cilk-a results from the affiliation of the workers with the cores.
In the rest of our experiments, we only compare the performance of CAB-GTO with
Cilk-a.

In summary, with the profiling-based method for iterative programs and the
compiling-based method for non-iterative programs, CAB-GTO is effective for
memory-bound divide-and-conquer programs.

3.8.2.2 Scalability of CAB-GTO

In order to evaluate the scalability of CAB-GTO in different scenarios, benchmarks
that have both regular and irregular task graphs are used in this section. In this
experiment, we can change the input data sizes of the benchmarks. By comparing
the performance of benchmarks with different input data sizes in CAB-GTO and
Cilk-a, the scalability of CAB-GTO is evaluated.

During the execution of all the benchmarks, every task divides its data set into
several parts by rows to generate child tasks unless the task meets the cutoff point
(i.e., the data set size of a leaf task). Since the data set size of the leaf tasks affects the
measurement of scalability, the data set size of the leaf tasks in the experiment should
be constant. To satisfy this requirement, a constant cutoff point, 8 rows, is used for
the leaf tasks, and a constant number of columns, 512, for the input data. Only the
number of rows of the input matrix is adjusted in the experiment. In this way, the
scalability of CAB-GTO can be measured without the impact of the granularity of
the leaf tasks. In all the following figures, the x-axis represents the number of rows
of the input matrix.

Benchmarks with Regular Task GraphsHeat and SOR are used as benchmarks
to evaluate the scalability of CAB-GTO for applications with regular task graphs.
Other benchmarks, such as GE, have similar results.

Figure 3.20 shows the performance ofHeat and SORwith different input data sizes
in Cilk-a and CAB-GTO. From Fig. 3.20, we can see thatHeat and SOR achieve better
performance in CAB-GTO for all sizes of the input data up to 8192 rows compared
with Cilk-a. When the input data size is small (i.e., 1024 × 512), CAB-GTO reduces
40.4% execution time of Heat and reduces 56.1% execution time of SOR. When the
input data size is large (i.e., 8192 × 512), CAB-GTO reduces 12.3% execution time
of Heat and reduces 21.1% execution time of SOR.

Figure 3.21 shows the L2 and L3 cache misses of Heat with different input data
sizes in Cilk-a and CAB-GTO. Observed from the figure, we can find that both
the shared cache misses and the private cache misses are reduced in CAB-GTO
compared with Cilk-a. The better performance of Heat in CAB-GTO results from
the less cache misses in CAB-GTO compared with Cilk-a. When the input data size
is small (1024 × 512), CAB-GTO can reduce 76.1% L3 cache misses and 15.2% L2
cache misses compared with Cilk-a. When the input data size is large (8192 × 512),
CAB-GTO can reduce 55.9% L3 cache misses and 3.6% L2 cache misses compared

www.manaraa.com

3.8 Evaluation of CAB 67

(a) Performance of Heat (b) Performance of SOR

Fig. 3.20 Performance of Heat and SOR with different input data sizes in Cilk-a and CAB-GTO

(a) L2 cache misses of Heat (b) L3 cache misses of Heat

Fig. 3.21 L2 and L3 cache misses of Heat with different input data sizes in Cilk-a and CAB-GTO

with Cilk-a. Therefore, when CAB-GTO schedules regular memory-bound programs
with regular task graphs, it is scalable. Other benchmarks show similar results of
cache misses.

Benchmarkswith IrregularTaskGraphsHeat-ir and SOR-ir are used as bench-
marks to evaluate the scalability of CAB-GTO for memory-bound programs with
irregular task graphs. Other benchmarks, such as GE-ir, have similar results.

Figure 3.22 shows the performance ofHeat-ir and SOR-irwith different input data
sizes in Cilk-a and CAB-GTO. From Fig. 3.22 we can find that Heat-ir and SOR-
ir also achieve better performance in CAB-GTO for all input data sizes compared
with Cilk-a. When the input data size is small (i.e., 1024 × 512), CAB-GTO reduces
35.3% execution time of Heat-ir and reduces 44.9% execution time of SOR-ir. When
the input data size is large (i.e., 8192 × 512), CAB-GTO reduces 11.4% execution
time of Heat-ir and reduces 18% execution time of SOR-ir.

www.manaraa.com

68 3 Work-Stealing for Multi-socket Architecture

(a) Performance of Heat-ir (b) Performance of SOR-ir

Fig. 3.22 Performance of Heat-ir and SOR-ir with different input data sizes in Cilk-a and CAB-
GTO

(a) L2 cache misses of SOR-ir (b) L3 cache misses of SOR-ir

Fig. 3.23 L2 and L3 cache misses of SOR-ir with different input data sizes in Cilk-a and CAB-GTO

Figure 3.23 shows the L2 and L3 cache misses of SOR-ir with different input data
sizes. Observed from the figure, we can find that both the shared cache misses and
the private cache misses of SOR-ir are reduced in CAB-GTO compared with Cilk-a.
The better performance of SOR-ir in CAB-GTO results from the less cache misses in
CAB-GTO compared with Cilk-a. When the input data size is small, CAB-GTO can
reduce 73.1% L3 cache misses and 21.2% L2 cache misses compared with Cilk-a.
When the input data size is large, CAB-GTO can reduce 38.2% L3 cache misses
and 5.2% L2 cache misses compared with Cilk-a. Other benchmarks show similar
results of cache misses.

As illustrated in Figs. 3.20 and 3.22, the execution times of the benchmarks in
both Cilk-a and CAB-GTO increase linearly to the input data size, because the
execution times of the memory-bound benchmarks in both Cilk-a and CAB-GTO
are determined by the input data size. However, for all the input data sizes, CAB-

www.manaraa.com

3.8 Evaluation of CAB 69

Fig. 3.24 Performance of
CPU-bound benchmarks in
Cilk-a and CAB-GTO

GTO can reduce the execution times of the memory-bound benchmarks accordingly.
Therefore, CAB-GTO is scalable in scheduling both regular task graphs and irregular
task graphs.

In addition, Figs. 3.21 and 3.23 further verify that CAB-GTO can also slightly
reduce private cache misses by scheduling tasks with shared data into the same
socket, which is due to the same reason explained previously.

In summary, the experiment in this section shows that CAB-GTO is scalable.
It improves the performance of memory-bound benchmarks by reducing shared L3
cache misses. The experiment also shows that CAB-GTO can slightly reduce the pri-
vate L2 cache misses, which is the by-product of the bi-tier work-stealing algorithm
in CAB-GTO.

3.8.2.3 Performance of CAB-GTO for CPU-Bound Benchmarks

Since CAB-GTO is proposed to reduce shared cache misses of memory-bound appli-
cations, it is neutral to CPU-bound applications. Therefore, for CPU-bound appli-
cations, CAB-GTO uses traditional random work-stealing to schedule the tasks as
Cilk-a.

Figure 4.16 shows the performance of CPU-bound benchmarks listed in Table 3.6
in Cilk-a and CAB-GTO. By comparing the performance of CAB-GTO with Cilk-a,
we can find the extra overhead of CAB-GTO. Observed from Fig. 4.16, we see the
extra overhead of CAB-GTO is negligible compared with Cilk-a. The extra over-
head of CAB-GTO mainly comes from the profiling overhead when CAB-GTO can
determine if the program is CPU-bound or memory-bound based on the profiling
information.

3.9 Summary

In this chapter, we discuss state-of-the-art work-stealing scheduling policy for emerg-
ing multi-socket architecture. In multi-socket architecture, If the two tasks with
shared data are scheduled to the same socket, only one of them needs to read the

http://dx.doi.org/10.1007/978-981-10-6238-4_4
http://dx.doi.org/10.1007/978-981-10-6238-4_4

www.manaraa.com

70 3 Work-Stealing for Multi-socket Architecture

shared data from the main memory while the other task can access the data from
the shared cache directly. Based on this observation, a Cache-Aware Bi-tier (CAB)
work-stealing policy that automatically schedules tasks with shared data into the
same socket is introduced in this chapter.

CAB is targeting divide-and-conquer (D&C) memory-bound applications, which
covers a wide range of scientific applications in fluid dynamics, quantum dynamics,
binary alloys, electromagnetism, superconductivity, thermodynamics, environmen-
tal systems, etc. The simulation of these systems has data parallelism that is often
exploited with stencil-based approaches [4]. These applications are often iterative
since the computation is repeated in steps of time. Their task graphs in systems like
MIT Cilk are tree-shaped, which is ideally suitable for CAB.

CAB consists of a cache aware task graph partitioner and a bi-tier work-
stealing scheduler. The task graph partitioner divides the task graph of a parallel
program into the inter-socket tier and the intra-socket tier. The bi-tier work-stealing
scheduler allows tasks in the inter-socket tier to be stolen across sockets, while tasks
in the intra-socket tier are scheduled within the same socket. Since tasks from the
intra-socket tier often share data, CAB uses the shared cache efficiently. Experimental
results demonstrate that CAB significantly reduces the shared cache misses and thus
improves the performance of memory-bound applications. The experiment shows
that CAB can achieve a performance gain of up to 74.4% compared with traditional
work-stealing.

3.9.1 Chapter Highlights

The following highlights of this chapter could be of your interest:

• We systematically analyze the TRICI problem caused by the random work-stealing
in MSMC architecture.

• We propose a profiling-based method and a compiling-based method that collect
the data access feature of tasks for iterative programs and non-iterative programs
respectively. Based on the collected information, a DAG partitioner optimally
divides tasks into the inter-socket tier and the intra-socket tier.

• We propose a bi-tier work-stealing algorithm that schedules tasks with shared data
to the same socket.

• We demonstrate that CAB significantly reduces the shared cache misses and thus
improves the performance of memory-bound applications. The experiment shows
that CAB can achieve a performance gain of up to 74.4% compared with traditional
work-stealing.

www.manaraa.com

References 71

References

1. U. Acar, G. Blelloch, and R. Blumofe. The data locality of work stealing. Theory of Computing
Systems, 35(3):321–347, 2002.

2. E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X. Teruel, P. Unnikrishnan,
and G. Zhang. The design of openmp tasks. IEEE Transactions on Parallel and Distributed
Systems, 20(3):404–418, 2009.

3. R. Azimi, M. Stumm, and R. Wisniewski. Online performance analysis by statistical sampling
of microprocessor performance counters. In Proceedings of the 19th annual international
conference on Supercomputing, pages 101–110. ACM, 2005.

4. M. Berger and J. Oliger. Adaptive mesh refinement for hyperbolic partial differential equations.
Journal of computational Physics, 53(3):484–512, 1984.

5. G. Blelloch, R. Chowdhury, P. Gibbons, V. Ramachandran, S. Chen, and M. Kozuch. Prov-
ably good multicore cache performance for divide-and-conquer algorithms. In Proceedings of
the 19th annual ACM-SIAM symposium on Discrete algorithms, pages 501–510. Society for
Industrial and Applied Mathematics, 2008.

6. G. Blelloch, J. Fineman, P. Gibbons, and H. V. Simhadri. Scheduling irregular parallel com-
putations on hierarchical caches. In Proceedings of the 20th ACM Symposium on Parallel
Algorithms and Architectures, San Jose, California, June 2011.

7. G. Blelloch, P. Gibbons, and H. Simhadri. Low depth cache-oblivious algorithms. In Pro-
ceedings of the 22nd ACM symposium on Parallelism in algorithms and architectures, pages
189–199. ACM, 2010.

8. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou. Cilk:
An efficient multithreaded runtime system. Journal of Parallel and Distributed computing,
37(1):55–69, Aug. 1996.

9. R. D. Blumofe. Executing Multithreaded Programs Efficiently. PhD thesis, Department of
Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Sept.
1995. MIT Laboratory for Computer Science Technical Report MIT/LCS/TR-677.

10. D. Butenhof. Programming with POSIX threads. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1997.

11. D. Chase and Y. Lev. Dynamic circular work-stealing deque. In Proceedings of the seventeenth
annual ACM symposium on Parallelism in algorithms and architectures, page 28. ACM, 2005.

12. S. Chen, P. Gibbons, M. Kozuch, V. Liaskovitis, A. Ailamaki, G. Blelloch, B. Falsafi, L. Fix,
N. Hardavellas, T. Mowry, et al. Scheduling threads for constructive cache sharing on CMPs.
In Proceedings of the nineteenth annual ACM symposium on Parallel algorithms and archi-
tectures, pages 105–115. ACM, 2007.

13. Q. Chen, M. Guo, and Z. Huang. Cats: Cache aware task-stealing based on online profiling in
multi-socket multi-core architectures. In the 26th InternationalConference on Supercomputing,
pages 163–172. IEEE, 2012.

14. Q. Chen, Z. Huang, M. Guo, and J. Zhou. CAB: Cache-aware Bi-tier task-stealing in Multi-
socket Multi-core architecture. In the 40th International Conference on Parallel Processing,
pages 722–732, 2011.

15. Q. Chen, M. Guo, and Z. Huang. Adaptive cache aware bi-tier work-stealing in multi-socket
multi-core architectures. IEEE Transactions on Parallel and Distributed Systems, 24(12):2334–
2343, 2013.

16. R. Cole and V. Ramachandran. Analysis of Randomized Work Stealing with False Sharing.
ArXiv e-prints, Mar. 2011.

17. X. Ding, K. Wang, and X. Zhang. ULCC: a user-level facility for optimizing shared cache
performance on multicores. In Proceedings of the ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, pages 103–112, 2011.

18. M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms. In
the 40th Annual Symposium on Foundations of Computer Science, pages 285–297, New York,
USA, 1999. IEEE.

www.manaraa.com

72 3 Work-Stealing for Multi-socket Architecture

19. A. Gerasoulis and T. Yang. A comparison of clustering heuristics for scheduling directed
acyclic graphs on multiprocessors. Journal of Parallel and Distributed Computing, 16(4):276–
291, 1992.

20. W. Gropp, E. Lusk, and A. Skjellum. Using MPI: portable parallel programming with the
message passing interface. MIT Press, 1999.

21. Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work-first and help-first scheduling policies for
async-finish task parallelism. In the 23th IEEE International Parallel and Distributed Process-
ing Symposium, pages 1–12. IEEE, 2009.

22. Y. Guo, J. Zhao, V. Cave, and V. Sarkar. Slaw: a scalable locality-aware adaptive work–stealing
scheduler. In the 24th IEEE International Parallel and Distributed Processing Symposium,
pages 1–12. IEEE, 2010.

23. D. Hendler and N. Shavit. Non-blocking steal-half work queues. In Proceedings of the 21th
annual symposium on Principles of distributed computing, pages 280–289. ACM, 2002.

24. D. Hendler, Y. Lev, M. Moir, and N. Shavit. A dynamic-sized nonblocking work stealing deque.
Sun Microsystems, Inc. Technical Reports; Vol. SERIES13103, page 69, 2005.

25. D. Lea. A Java fork/join framework. In Proceedings of the ACM 2000 conference on Java
Grande, pages 36–43. ACM, 2000.

26. J. Lee and J. Palsberg. Featherweight X10: a core calculus for async-finish parallelism. In
Proceedings of the 15th ACM SIGPLAN symposium on Principles and practice of parallel
computing, pages 25–36. ACM, 2010.

27. D. Leijen, W. Schulte, and S. Burckhardt. The design of a task parallel library. ACM SIGPLAN
Notices, 44(10):227–242, 2009.

28. C. Leiserson. The Cilk++ concurrency platform. In Proceedings of the 46th Annual Design
Automation Conference, pages 522–527. ACM, 2009.

29. M. M. Michael, M. T. Vechev, and V. A. Saraswat. Idempotent work stealing. In Proceedings
of the 14th ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 45–54. ACM, 2009.

30. S. L. Olivier, A. K. Porterfield, K. B. Wheeler, and J. F. Prins. Scheduling task parallelism on
multi-socket multicore systems. In Proceedings of the 1st International Workshop on Runtime
and Operating Systems for Supercomputers, pages 49–56, Tucson, Arizona, 2011. ACM.

31. J.-N. Quintin and F. Wagner. Hierarchical work-stealing. In Proceedings of the 16th interna-
tional Euro-Par conference on Parallel processing: Part I, pages 217–229. Springer-Verlag,
2010.

32. J. Reinders. Intel threading building blocks. O’Reilly, 2007.
33. R. Van Nieuwpoort, T. Kielmann, and H. E. Bal. Efficient load balancing for wide-area divide-

and-conquer applications. In In ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming. Citeseer, 2001.

34. L. Wang, H. Cui, Y. Duan, F. Lu, X. Feng, and P. Yew. An adaptive task creation strategy for
work-stealing scheduling. In Proceedings of the 8th annual IEEE/ACM international sympo-
sium on Code generation and optimization, pages 266–277. ACM, 2010.

35. J. Zhang, Z. Huang, W. Chen, Q. Huang, and W. Zheng. Maotai: View-Oriented Parallel Pro-
gramming on CMT processors. In 37th International Conference on Parallel Processing, pages
636–643. IEEE, 2008.

www.manaraa.com

Chapter 4
Work-Stealing for NUMA-enabled
Architecture

Abstract Modern mainstream powerful computers not only adopt multi-socket
multi-core CPU architecture, but also adopt the Non-Uniform Memory Access
(NUMA)-based memory architecture. Although the CAB scheduler introduced in
Chap.3 can effectively improve the shared cache utilization, it still leads to severe
remote memory accesses in these computers that significantly degrades the per-
formance of memory-bound applications. To solve this problem, in this chapter, we
introduce scheduling techniques that can better utilize both the shared cache in CPUs
and the NUMA-based memory system.

4.1 Chapter Organization

In this chapter, we first analyze the existing NUMA unawareness problem of the
existing random work-stealing schedulers in Sect. 4.2. In Sect. 4.3, we overview the
techniques on improving task scheduling for NUMA-based memory system. Specif-
ically in Sect. 4.4, we present the state-of-the-art technique, locality-aware work-
stealing (LAWS), that optimize work-stealing for NUMA-based memory system.
After that, we evaluate the performance of LAWS in Sect. 4.10.

4.2 Background and Existing Problems

As we present in Fig. 1.2, modern shared-memory MSMC computers often employ
NUMA-based (Non-Uniform Memory Access) memory system, in which the whole
main memory is divided into multiple memory nodes and each node is attached to
the socket of a chip. The memory node attached to a socket is called its local memory
node and those that are attached to other sockets are called remote memory nodes.

Part of contents in this chapter has been published through ACM Transactions on Archi-
tecture and Code Optimization. Reprinted from Ref. [31], with permission from ACM. Fig-
ures4.1, 4.5, 4.7, 4.8 and4.9 in this chapter have been published through ACM Transactions on
Architecture and Code Optimization. Reprinted from Ref. [31], with permission from ACM.

© Springer Nature Singapore Pte Ltd. 2017
Q. Chen and M. Guo, Task Scheduling for Multi-core and Parallel Architectures,
https://doi.org/10.1007/978-981-10-6238-4_4

73

http://dx.doi.org/10.1007/978-981-10-6238-4_3
http://dx.doi.org/10.1007/978-981-10-6238-4_1

www.manaraa.com

74 4 Work-Stealing for NUMA-enabled Architecture

D

a
,
D

b

0,D[)

t0

t1 t2

Fig. 4.1 An example task graph for Divide-and-Conquer programs

Fig. 4.2 The data access
pattern in random
work-stealing, and the
optimal data access pattern
on NUMA-enabled MSMC
architectures

Shared Cache
...

i

NjNi Nk

Shared Cache Shared Cache

Data

R/W

j k

(a) Data Access Pattern with Random Work-stealing

Shared Cache
...

i

NjNi Nk

Shared Cache Shared Cache

Data

R/W

j k

(b) Optimal Data Access Pattern

The cores of a socket access its local memory node much faster than the remote
memory nodes.

On an MSMC architecture with NUMA-base memory system, Fig. 4.2 gives an
example task graph for divide-and-conquer programs and the corresponding data
access pattern with the traditional random work-stealing. In a divide-and-conquer
program, its data set is recursively divided into several parts until each of the leaf
tasks only processes a small part of the whole data set.

Suppose the task graph in Fig. 4.1 runs on an MSMC architecture with a NUMA
memory system as shown in Fig. 4.2(a). In the NUMA-enabled MSMC architecture,
a memory node Ni is attached to the socket ρi . In Linux memory management for
NUMA, if a chunk of data is first accessed by a task that is running on a core of
the socket ρ, a physical page from the local memory node of ρ is automatically
allocated to the data. This data allocation strategy employed in Linux kernel and
Solaris is called first touch strategy.

www.manaraa.com

4.2 Background and Existing Problems 75

For a parallel program, its data set is often first accessed by tasks in the first
iteration or an independent initialization phase. Taking advantage of the first-touch
strategy, if the tasks are scheduled to different sockets, the whole data set of the
program that has the task graph in Fig. 4.1 is split and stored in different memory
nodes as in Fig. 4.2.

However, traditional randomwork-stealing suffers from twomain problemswhen
scheduling the task graph in Fig. 4.1 in NUMA-enabled MSMC architectures. First,
most tasks have to access their data from remote memory nodes in all the iterations.
Second, the shared caches are not utilized efficiently.

As for the first problem, suppose the whole data set of the program in Fig. 4.1
is [0, D), and the task t0 is the first task that accesses the part of the data [Da ,

D
b)

(a > b ≥ 1). If task t0 is scheduled to socket ρi , the part of the data [Da ,
D
b) is

automatically allocated to the memory node, Ni , of socket ρi , due to the first touch
strategy. Suppose task t0 in a later iteration processes the data [Da ,

D
b). Due to the

randomness of work-stealing, it is very likely that t0 is scheduled to socket ρ j instead
of ρi . In this situation, t0 is not able to access (read/write) its data from its fast local
memory node, instead it has to access a remote memory node for its data. If we
can carefully schedule the tasks so that each task is schedule to the socket where
the memory node stores its data as shown in Fig. 4.2(b), the data access time can
be significantly reduced and the performance of memory-bound applications can be
improved in consequence.

As for the second problem, as we discussed in Chap. 3, neighbor tasks (for
instance, t1 and t2 in Fig. 4.1) are still likely to be scheduled to different sockets due to
the randomness of stealing in traditional work-stealing schedulers. This causes more
shared cache misses as neighbor tasks in a task graph often share some data. For
example, in Fig. 4.1, both t1 and t2 need to read all their data from the main memory
if they are scheduled to different sockets. However, if t1 and t2 are scheduled to the
same socket, their shared data is only read into the shared cache once by one task,
while the other task can read the data directly from the shared cache.

According to the above analysis, there are three key challenges have to be resolved
in an effective task scheduling policy forNUMA-enabledMSMCarchitectures. First,
the policy should be able to balance the workload across multiple sockets. Second,
the policy should schedule the tasks carefully, so that each task accesses data from
cache as much as possible. Third, if the data of a task is not in the cache, the task
should be able to find its data from the localmemory node. Onlywhen the above three
challenges are resolved, the policy can guarantee load balancing while minimizing
the cost of accessing data. In the next section, we discuss prior NUMA-aware task
scheduling solutions.

4.3 Prior Solutions

A large amount of prior work has been done to improve the performance [18] of
work-stealing policy on various hardwares. Related to LAWS, there are two main

http://dx.doi.org/10.1007/978-981-10-6238-4_3

www.manaraa.com

76 4 Work-Stealing for NUMA-enabled Architecture

approaches for improving the performance ofmemory-intensive programs inMSMC
architectures: reducing shared cache misses and increasing local memory accesses.

The work of reducing shared cache misses has been discussed earlier in Chap.3.
Besides, a large amount of prior work also improve the performance of a particular
application [6, 28, 31] or general applications [24, 25, 30] by increasing local mem-
ory accesses in NUMAmemory system. For instance, Shaheen et al. [28] proposed a
scalable cache aware scheme for iterative stencil computations, nuCATS; and a scal-
able cache oblivious scheme for iterative stencil computations, nuCORALS. The
two schemes improved the performance of iterative stencil computations for NUMA
memory system by optimizing temporal blocking and tiling. While the two schemes
focused on the tiling scheme for stencil programs, through online scheduling, we
aim to improve the performance of iterative stencil programs without changing the
tiling scheme.

In the following of this section, we introduce several representative work on
improving the performance of memory-intensive applications in MSMC architec-
tures through increasing local memory accesses.

4.3.1 Random Pushing

Awell-knownvariation of randomstealing inwork-stealing policy is randompushing
[33] With random pushing, after a worker generates a new task, the worker checks
whether the length of its task queue exceeds a pre-defined threshold. If this is the
case, a task from the tail of its task queue is popped out and then pushed into the
task queue of a randomly chosen peer worker. The task at the tail of a task queue has
the largest workload. This approach aims at minimizing processor idle time because
tasks are pushed ahead of time, before they are actually needed, but comes at the
expense of additional communication overhead. One might expect random pushing
to work well in a wide-area setting, because its communication is asynchronous.
Thus, it is less sensitive to high wide-area round-trip times than work stealing. A
problem with random pushing, however, is that the algorithm is not stable. Under
high work loads, task pushing results in useless overhead, because all the workers
already have work.

If random pushing is used in the scenario of distributed cluster, the task will
be sent through network, causing bandwidth congestion. Different from traditional
work-stealing, random pushing does not adapt its WAN utilization to bandwidth and
latency as it lacks a bound for the number of messages that may be sent, i.e. there is
no inherent flow-control mechanism.

Another drawback of random pushing is that the memory space is not bounded
in random pushing. This is mainly because tasks may be pushed away as fast as they
can be generated, and have to be stored at the receiver. In order to avoid exceeding
communication buffers, existing implementation of random pushing adds an upper
limit of tasks sent by each node that can be in transit simultaneously. This upper
limit has to be optimized manually. Additionally, a threshold value must be found

http://dx.doi.org/10.1007/978-981-10-6238-4_3

www.manaraa.com

4.3 Prior Solutions 77

that specifies when tasks will be pushed away. A single threshold value is not likely to
be optimal for all applications, or not even for one application with different network
bandwidths and latencies. In theory, without considering network bandwidth and
latency, simply pushing away all the generated tasks is proved to perform well [33].
However, in practice, it has too much communication and marshalling overhead for
fine-grained divide-and-conquer applications.

4.3.2 Cluster-Aware Hierarchical Stealing (CHS)

In distributed cluster, traditional random work-stealing and random task pushing
both suffer from heavy network communication. In emerging MSMC architecture,
they also incurs heavy inter-connect network communication. In order to solve
this problem, researchers proposed Cluster-aware Hierarchical Stealing (CHS) for
balancing the workload of divide-and-conquer applications in wide-area systems
by minimize network communication [33]. The key idea of CHS is to arrange
nodes/processors/cores in a tree-shaped topology, and to send steal messages along
the edges of the tree. When a node/processor/core is free, it first asks its child
nodes/processors for a new task. If the children nodes/processors do not have queued
tasks, steal messages will recursively descend the tree. Only when the entire subtree
does not have queued tasks, the steal messages will be sent upwards in the tree,
asking parent nodes for work.

CHS scheme exhibits much higher data locality, because the tasks inside the same
subtree will always complete before the stealing messages are sent to the parent node
of the subtree. By arranging the nodes of a cluster in a tree shape, the algorithms local-
ity can be used to minimize network communication. It is also possible that multiple
clusterswork together to process an parallel application.When the root node of a clus-
ter finds its own cluster to be idle, it sends a steal message to the root node of another,
randomly selected cluster. Figure4.3 shows an example arrangement of the clusters.
In the figure, each small filled square is a computer node; each large square is a cluster.
Different clusters communicated with each other using their root nodes.

Due to the tree-shaped topology, CHS has two drawbacks. First, the root node of
a cluster waits until the entire cluster becomes idle before starting cross-cluster steal
attempts. During the round-trip time of the steal message, the entire cluster remains
idle. Second, the preference for stealing further down the tree results in jobs with
finer granularity to be stolen first, leading to high network communication overhead,
due to tremendous task transfers.

4.3.3 Cluster-Aware Load-Based Stealing (CLS)

As we discussed earlier, both random pushing and CHS suffers from high network
communication overhead, especially for application with fine-grained tasks. Espe-

www.manaraa.com

78 4 Work-Stealing for NUMA-enabled Architecture

Fig. 4.3 An example arrangement of the clusters. Nodes are connected in tree shapes and multiple
trees are connected via wide-area links

cially, when stealing a task from a remote cluster, the whole cluster stalls, waiting
for the new task. The high network communication overhead and the cluster stalls
together result in the poor performance of random pushing and CHS. In order to
address the two problems, Cluster-aware Load-based Stealing (CLS) is proposed
[33]. The key idea behind CLS is to combine random stealing inside clusters with
cross-cluster task prefetching performed by one coordinator node per cluster. With
a single cluster, CLS is identical to random work-stealing.

Insider a cluster, each node adopts traditional random work-stealing to steal tasks
from each other. Because there is no preference for stealing fine-grained tasks, it
reduces thenetwork communicationoverhead comparedwith the tree-based approach
in CHS. Between different clusters, in order to minimize the cross-cluster commu-
nication, CLS only allows coordinator nodes to perform cross-cluster work stealing.
Furthermore, in order to avoid cluster stalling, CLS allows the coordinator nodes to
prefetch tasks. The prefetching operation requires a careful balance between commu-
nication overhead and processor idle time.On the one hand, if the tasks are prefetched
too early, the communication overhead grows unnecessarily. On the other hand, if the
tasks are prefetched too late, processors may become idle. Pure work-stealing can
be seen as one extreme of this tradeoff, where jobs are never prefetched. Pure work-
pushing is the other extreme where jobs are always transferred ahead of time.

In CLS, prefetching is controlled by the workload information from the compute
nodes. Each node periodically sends its workload information to the cluster coordi-
nator that monitors the overall workload of its cluster. The compute nodes send their
load messages asynchronously, keeping the overhead small. Furthermore, when a
node becomes idle, it immediately sends a load message (with the value zero) to
the coordinator. A good interval for sending the load messages is subject to parame-
ter tuning. When the total cluster load drops below a specified threshold value, the

www.manaraa.com

4.3 Prior Solutions 79

coordinator initiates cross-cluster steal attempts to randomly chosen nodes in remote
clusters. The coordinator can hide the high cross-cluster round-trip transfer time
by overlapping communication and computation, because the cross-cluster prefetch
messages are asynchronous.

Another tunable parameter is the value of the threshold that is used to trigger
the cross-cluster prefetching. This parameter strongly depends on the application
granularity and the network latency and bandwidth. An option is to use the length of
the work queue as load indicator. This indicator might not be very accurate, due to
the job granularity that descends with increasing recursion depth. It is still an open
problem to find the most effective load indicator, although prior work [21] found that
the queue length on a node is a relative effective way to indicate the workload on the
node.

4.3.4 Cluster-Aware Random Stealing (CRS)

The cluster-aware load-based stealing schemehas twomain drawbacks. First, accord-
ing to the above discussion, only when the parameters (e.g., threshold used to trigger
the cross-cluster prefetching, idle interval) are carefully tuned, CLS is able to mini-
mize both intra-cluster and cross-cluster network communication overheads. Second,
the prefetched tasks are stored on a centralized coordinator node rather than on the
idle nodes themselves. In this case, with the high cross-cluster round-trip time, the
coordinator nodes might become a stealing bottleneck if the local nodes together
compute tasks faster than they can be prefetched by the coordinator node.

Cluster-aware Random Stealing (CRS) [33] is proposed to overcome the above
two problems. Same to CLS, it uses random task stealing inside clusters. Different
from CLS, CRS scheme uses a different approach to perform cross-cluster stealing.
The key idea behind CRS is to omit centralized coordinator nodes. Instead, a decen-
tralized control mechanism is proposed and adopted in CRS for the cross-cluster
communication directly in the worker nodes. In more detail, Algorithm 4 gives the
algorithm of CRS.

As observed from the algorithm, each node can directly steal tasks from nodes
in remote clusters, but at most one task at a time. Whenever a node becomes idle, it
first attempts to steal from a node in a remote cluster. This cross-cluster steal request
is sent asynchronously. Instead of waiting for the result, the thief simply sets a flag
and performs additional, synchronous steal requests to nodes within its own cluster,
until it finds a new task. When a local task is found, the cross-cluster steal request is
not cancelled. As long as the flag is set, only local stealing will be performed. The
handler routine for the cross-cluster reply simply resets the flag and, if the request
was successful, puts the new task into the task queue.

TheCRS scheme also implements an efficientway of task prefetching that delivers
the new task directly on the idle node and does not need parameter tuning. The
implication of this scheme is that many remote clusters will be asked for tasks
concurrently when a large part of a cluster is idle. As soon as one remote steal attempt

www.manaraa.com

80 4 Work-Stealing for NUMA-enabled Architecture

Algorithm 4 Pseudo code for Cluster-aware Random Stealing.
void cluster_aware_random_stealing(void) {
while(NOT exiting) {
task = queue_get_from_head();
if(task) {
execute(task);

} else {
if(nr_clusters > 1 AND NOT stealing_remotely) { /* no wide-area message in transit */
stealing_remotely = true;
send_async_steal_request(remote_victim());

}
task = send_steal_request(local_victim());
if(task) queue_add_to_tail(task);
}

}
}
void handle_cross_cluster_reply(Task task) {
if(task) queue_add_to_tail(task);
stealing_remotely = false;

}

is fulfilled, the work will be quickly distributed over the whole cluster, because local
steal attempts are performed during the long cross-cluster round-trip time. Therefore,
when tasks are found in a remote cluster, the work is propagated quickly.

Compared to traditional random work-stealing, CRS significantly reduces the
number of messages sent between different clusters. CRS has the advantages of
random stealing, but hides the long cross-cluster round-trip time by additional, local
stealing. The first task to arrive will be executed. No extra load messages are needed,
and no parameters have to be tuned.

The above four schemes (i.e., random pushing, CHS, CLS, CRS) are proposed to
improve the performance of parallel applications on large-scale distributed clusters.
Table4.1 [33] compares the four schemes. Observed from the table, the CRS scheme
performs the best compared with the other three schemes. These schemes are also
able to be adapted to NUMA-enabled MSMC architectures where a socket is treated
to be a cluster and the cores in the same socket are treated to be the nodes in the same
cluster.

4.3.5 TATL

Besides the above four schemes, Vikranth et al. [30] proposed a dynamic topology-
aware work-stealing scheme for on-chip NUMA-enabled multi-core processors
based on the topology of underlying hardware.

In TATL, if there are M sockets, and there are N cores per socket, then M worker
pools are created where each pool contains N worker threads there by grouping the

www.manaraa.com

4.3 Prior Solutions 81

Table 4.1 Comparison between random pushing, CHS, CLS, and CRS

Scheme Optimization goal Drawbacks Task transfer

Random pushing Idle time Unstable heavy
cross-cluster comm.

Synchronous

CHS Cross-cluster comm. Cluster stalling heavy
inter-cluster comm.

synchronous

CLS Inter-cluster comm.
Cross-cluster comm.

Slow task distribution
prefetching bottleneck

Synchronous in cluster
Prefetching across
cluster

CRS Inter-cluster comm.
Cross-cluster comm.

/ Synchronous in cluster
prefetching across
cluster

total worker threads into M stealing domains. By restricting the task stealing within
the same domain, the number of cross chip references and remote cache misses are
reduced. Task stealing from a remote domain is allowed only when a thief worker is
unable to find a victim worker in its local domain. Grouping M × N worker threads
in M domains of N workers each gives the advantage of flexible implementation
and does not cause any overhead. The stealing domains also allow the runtime to be
easily scalable.

TATLalso updates the randomvictim selection policy in traditionalwork-stealing.
In TATL scheme, each worker is responsible for advertising itself whenever its queue
length reaches the threshold value. Equations4.1and4.2 computes the minimum
threshold value and the maximum threshold value for the queue size respectively.
In the two equations, C is the capacity of the task queue; Tpush and Tpop denote the
time taken to perform push in or pop out to the double-ended task queue; λ and μ

represent the arrival and processing rates of task queue respectively.

S = C − λTpush + μTpop (4.1)

s = μTpop (4.2)

Leveraging the two thresholds, if the queue size of a worker is smaller than S, the
run-queue of the worker thread enters into THIEF state. Otherwise, if the queue size
of a worker is larger than s, the run-queue of the worker thread enters into VICTIM
state. When a worker in THIEF state completes all its tasks, the thief worker first
searches the list of workers whose state is already VICTIM in the same stealing
domain. In emerging implementation of TATL, a status bit is added to each worker
queue to represent either THIEF or VICTIM. The thief worker searches only the
run-queues with status VICTIM. This solves the problem of randomly choosing the
victim and failure to find a queue with enough number of tasks. When a thief worker
tries to search for a victim worker, it can find the victim easily by looking at the bit.
Hence the delays involved in repeated attempts are removed.

www.manaraa.com

82 4 Work-Stealing for NUMA-enabled Architecture

Algorithm 5 Algorithm of stealing tasks in TATL
if (localTaskQueue.size == THRESHOLD_MAX_SIZE)
then
this.status = VICTIM;

endif
if (! isEmpty(localTaskQueue)) then
run:
popAtFront(&localTaskQueue, &task);
execute task;
if (localTaskQueue.size == THRESHOLD_MIN_SIZE) then
this.status = THIEF;

endif
else
this.status = THIEF;

end if
taskQueue= searchForVictimQueue (thisStealingDomain);
popAtRear(&taskQueue, &task);
if (task) then
pushAtRear(&localTaskQueue , task);
goto run;

else
runQueue= searchForVictimQueue (remoteStealingDomain);
popAtRear(&taskQueue, &task);
if (task) then
pushAtRear(&localTaskQueue , task);
goto run;

endif
end if

Algorithm 5 shows the algorithm of stealing tasks in TATL. In the algorithm, the
function call searchForVictimQueue() searches for the run queues whose status is
already set to VICTIM. The values of THRESHOLD_MAX_SIZE and THRESH-
OLD_MIN_SIZE are computer using the S and s variables from Eqs. 4.1 and4.2.

4.3.6 NUMALB

NUMALB [25], a NUMA-aware load balancer, is proposed to improve parallel sys-
tem performance based on Charm++ [19], a parallel runtime system that provides an
object oriented parallel programming language.

In most cases, once the data (e.g. a message) is touched, this memory policy will
not perform any data migration to enhance memory affinity. This might result in
sub-optimal data placement on NUMA platforms. For instance, we can imagine a
situation where some messages have been generated and originally allocated on core
0 of NUMA node 0. After that, these messages are sent to core 1 of NUMA node
1 and after several hops they end up on core N of NUMA node N . All message
sends are pointer exchanges of data that were originally allocated and touched in the

www.manaraa.com

4.3 Prior Solutions 83

memory of core 0. In such a scenario, several remote accesses will be generated for
every communication.

NUMALB balances the workload while avoiding unnecessary migrations and
reducing cross-core communication. Generally speaking, based on runtime infor-
mation collected online, NUMALB adopts a heuristic algorithm to reduce the load
imbalance of parallel applications in NUMA-enabled MSMC architecture.

4.3.6.1 Obtaining Runtime Information

NUMALB collects two types of runtime information: application data and NUMA
topology. Application data comprises all information about the paral- lel application
that can be probed at runtime: task execution times, communication information,
and the assignment chosen by the scheduler at a given time. In CHARM++ RTS,
this information can be dynamically obtained during the execution of the application.
TheNUMA topology comprises all information that can be gathered at runtime about
the machine hardware that is running the application. A NUMA computer can be
characterized in terms of the number of NUMA nodes, cache memory sizes, sharing
of cache hierarchies among cores and grouping of NUMA nodes.

NUMALB defines a NUMA factor to synthesize both the NUMA topology and
the memory access penalties (it is more expensive to read data from remote memory
node than local memory node). The NUMA factor represents the overhead to access
remote data and is defined as in Eq.4.3:

F(i, j) = Li j

Lii
(4.3)

In the equation, F(i, j) is the NUMA factor of accessing data from cores in socket
i to the data stored in the NUMA node j . Li j is the data read latency from cores in
socket i to NUMA node j ; and Lii is the data read latency from the local memory
node of socket i . This factor is then computed for all NUMA nodes of the target
machine, resulting in a square matrix of NUMA factors. Thus, the main advantages
of using the NUMA factor as a topology indicator is that it is generic (can be easily
computed for different NUMAmachines) and aggregates the differentiating features
of NUMA machines. In addition, the NUMA factor can be precomputed, which
reduces the overhead of using it.

4.3.6.2 Load Balancing Heuristic

It is not possible to compute an assignment of tasks on to available processors that
optimally equalizes the load in polynomial time (unless P = N P). Moreover, in the
general case, a good scheduler should notmake any assumptions about the application
that will be executed, so it is also impossible to use precomputed assignments instead
of online scheduling. Thus, in practice, in order to compute a good (approximated)

www.manaraa.com

84 4 Work-Stealing for NUMA-enabled Architecture

assignment in a reasonable amount of time, NUMALB employs a heuristic algorithm
online.

The heuristic in NUMALB works like a classical List Scheduling algorithm [33],
where tasks are rescheduled from a priority list and assigned to less loaded proces-
sors in a greedy manner. List schedule algorithms usually are fast to compute and
provide good results in practice. The main idea of the heuristic is to improve applica-
tion performance by mapping tasks to cores while reducing the costs of unbalanced
computation and remote communications. The heuristic is based on the cost function
defined in Eq.4.4 for mapping of a task t on to core p.

cost (t, p) = load(p) + α × (rcomm(t, p) × F(comm(t), node(p)) − lcomm(t, p))

(4.4)

In the equation, load(p) represents the total load of core p, lcomm represents the
number of messages sent from task t to the tasks on cores of the same socket as
core p, and rcomm expresses the number of messages sent from task t to the tasks
on other NUMA nodes and is multiplied by the NUMA factor between the NUMA
node of core p (node(p)) and the NUMA nodes where these communicating tasks
are mapped (comm(c)). Finally, α controls the weight that the communication costs
have over the execution time. The heuristic uses the number of exchanged messages
because it represents the amount of accesses to the shared memory. Since messaging
time is related to the access latency, the cost is multiplied by the NUMA factor when
considering remote accesses. In addition, local communications are subtracted from
the overall cost to favor their occurrence.

Leveraging the heuristic described above and list scheduling, NUMALB always
picks the heaviest (largest execution time) unassigned task and assigns it to the core
that presents the smaller cost until all the tasks are allocated to appropriate cores.

However, NUMALB is only able to increase local memory accesses, it is not able
to reduce shared cache misses. Furthermore, it makes decision relying on the number
of messages sent from a task to the other tasks. This information is hard to obtain at
runtime online.

4.3.7 Offline Technique for Unstructured Parallelism

The techniques we mentioned above mainly target applications with structured par-
allelism. They are not able to exploiting locality for applications with unstructured
parallelism due to the following reasons. First, the lack of dependency information
implies the scheduler must obtain additional information from the workload to syn-
thesize locality structure. Without understanding what the crucial information is,
runtime and storage overheads for collecting the information can be significant. Sec-
ond, the larger degrees of freedom in scheduling increases algorithmic complexity.
Having many degrees of freedom implies many grouping and ordering choices, and
enumerating all combinations is prohibitive. Third, the complexity of many-core

www.manaraa.com

4.3 Prior Solutions 85

cache hierarchies makes the process all the more complicated. Grouping and order-
ing decisions must optimize locality across all cache levels, whether the hierarchy
being shared or private.

In order to exploit locality for applications with unstructured parallelism, based
on METIS [20], Yoo et al. [32] proposed an offline graph-based locality analysis
framework to analyze the inherent locality patterns of workloads. Leveraging the
analysis results, tasks are grouped and mapped according to cache hierarchy through
recursive scheduling. We introduce the two steps as follows.

4.3.7.1 Graph-Based Locality Analysis

A locality-aware schedule shouldmap tasks to cores, taking into account both locality
and load balance. Executing a set of tasks (a task group) on cores that share one or
more levels of cache captures data reuse across tasks. Similarly, executing tasks in
an optimal order minimizes the reuse distance of shared data between tasks, which
makes it easier for caches to capture the temporal locality. Generating a locality-
aware schedule depends on understanding how task groups should be formed, and
when ordering will matter.

In a schedule, both task grouping and task ordering affect the performance of a
parallel application. Executing a set of tasks (a task group) on cores that share one or
more levels of cache captures data reuse across tasks. Similarly, executing tasks in
an optimal order minimizes the reuse distance of shared data between tasks, which
makes it easier for caches to capture the temporal locality.

The graph-based locality analysis framework proceeds as follows: (1) each work-
load is profiled to collect the data access traces at cache line granularity, and discard
ordering information to obtain read and write sets for each task. (2) Using the set
information, the framework constructs a task sharing graph. In a task sharing graph
G(V, E), a vertex represents a task, and an edge denotes sharing. A vertex weight is
the task size in terms of number of dynamic instructions, and an edge weight is the
number of cache lines shared between the two tasks connected by the edge. (3) the
framework then partitions the graph to form task groups, and observes some metrics
to determine the “right” task group size and the impact of ordering.

Even with profile information about each tasks read and write sets, creating an
“optimal” set of task groups is still NP-hard. To solve this problem, a heuristic graph
partitioning tool, METIS [20], is adopted to generate quality task groups. METIS
divides the vertices from a task sharing graph into a given number of groups, while
trying to (a) maximize the sum of edge weights internal to each group (i.e., data
sharing captured by a task group), and (b) equalize the sum of vertex weights in each
group (i.e., balance load).

4.3.7.2 Recursive Task Scheduling

Based on the above analysis results, computation is able to be mapped onto an actual
cache hierarchy appropriately. Specifically, recursive scheduling, which (1) matches

www.manaraa.com

86 4 Work-Stealing for NUMA-enabled Architecture

L3 Cache

L2 Cache L2 Cache

L1 L1 L1 L1

L3 Group L3 Group

L3 Group
L2 grp L2 grp

L2 grpL1 L1

Lower
Hierarchy

Upper
Hierarchy

Cache Hierarchy Task Group Hierarchy

Fig. 4.4 Generating recursive task groups [32]. Different levels of groups are sized to fit in a
particular cache level. Colored arrows denote the group order determined over task groups

task groupworking sets and (2) applies ordering across all cache levels can be adopted
in this scenario.

Creating an optimal order for tasks is NP-hard. Heuristic-based techniques can
be applied in this scenario to provide high quality ordering. For instance, Prim’s
algorithm can be applied to construct a maximum spanning tree (MST), and use the
order that the vertices are added to the MST. In architectural terms, Prims algorithm
accumulates the read and write sets of scheduled tasks, and picks the task whose read
and write sets exhibit the maximum intersection with the cumulative sets as the next
task to execute. After that, in order to construct a task order, the MST is applied on
a task sharing graph. In order to construct a group order, the task sharing graph is
first mapped to a task group sharing graph, where each uber node represents a task
group; then MST is applied to the task group sharing graph.

Under recursive scheduling, in order to maximize the utility of every cache level,
tasks are grouped from the bottommost: We can first group tasks so that the task
groups working set fits in the last-level cache, and apply ordering over those groups.
We can then recursively apply this approach to each of the task groups, targeting one
level up in the cache hierarchy each time. For instance, Fig. 4.4 gives an example
that groups tasks for an architecture with three levels of caches. In the figure, we first
perform grouping on the full set of tasks to create L3 groups, each of which matches
the L3 size. Next, we order the L3 groups. For each L3 group, we then decompose it
into tasks and create L2 groups to match the L2 size. Then we order the L2 groups.
We proceed in this fashion until we finally generate L1 groups, order them, and order
their component tasks.

Generating a schedule as shown in Fig. 4.4 results in a hierarchy of task groups.
Moreover, since each task group also denotes a scheduling granularity, all the tasks
in a group will be executed consecutively. Therefore, a task group will stay resident
in its target cache from beginning to end. The existence of a hierarchy among these
task groups guarantees that all the groups containing a given task stay resident at
their corresponding level in the cache hierarchy, thus exploiting locality across all
cache levels.

Because the framework relied on offline analysis, a program has to be executed
at least one time before it can achieve good performance in the framework. On the

www.manaraa.com

4.3 Prior Solutions 87

contrary, the technique proposed in this section, LAWS, can improve the performance
of programs onlinewithout any prerequisite offline analysis, because it can pack tasks
into CF subtrees based on online collected information and auto-tuning.

4.4 Design of Locality-Aware Work-Stealing

Aswe discussed in Sect. 4.3, emergingwork-stealing schedulers either are not able to
improve shared cache utilization or not able to reduce the remote memory accesses.
In this section, we introduce a Locality-Aware Work-Stealing (LAWS) scheduler.
According to the above analysis, in order to optimize the performance of memory-
bound applications, when we design an efficient task scheduler for NUMA-enabled
MSMC architecture, the scheduler should obey the following several key guidelines.

• LAWS should have the ability to balance the workload across the sockets/cores.
• LAWS should have the ability to improve the shared cache utilization.
• LAWS should have the ability to reduce the remote memory accesses.

Following the above three key guidelines, LAWS ensures that the workload is
balanced and most tasks can access data from either the shared cache or the local
memory node. The performance of memory-bound programs can be improved due
to balanced workload and shorter data access latency.

More specifically, LAWS consists of a load-balanced task allocator, a cache-
friendly task graph partitioner and a triple-level work-stealing scheduler. The load-
balanced task allocator can evenly distribute the data set of a parallel program to all
the memory nodes and allocate a task to the socket where the local memory node
stores its data. The cache-friendly task graph partitioner can divide the task graph
of a program into Cache-Friendly Subtrees (CF subtrees) so that the shared cache
of each socket can be utilized effectively. The CF subtrees is similar to the intra-
socket subtrees defined in Chap.3. Because the purpose of dividing the task graph
into subtrees is to improve the cache utilization, we rename the intra-socket subtree
to CF subtree in this Chapter. The triple-level work-stealing scheduler is able to
schedule all the tasks accordingly to balance the workload and reduce shared cache
misses.

Figure4.5 illustrates the processing flow of an iterative program in LAWS. As
shown in Fig. 4.5, in every iteration, the load-balanced task allocator carefully assigns
tasks to different sockets to evenly distribute the data set of the program to all the
memory nodes and allocate each task to the socket where the local memory node
stores its data. In this situation, the workload of different sockets is balanced in
general since the time for processing the same amount of data is similar among tasks
in well-designed parallel programs. There may be some slight load-unbalance which
could be resolved by the triple-level work-stealing scheduler.

After the tasks are allocated to appropriate sockets with the load-balanced task
allocator, each socket will still have to execute a large number of tasks. The data
involved in these tasks are often too large to fit into the shared cache of a socket.

http://dx.doi.org/10.1007/978-981-10-6238-4_3

www.manaraa.com

88 4 Work-Stealing for NUMA-enabled Architecture

Start End
Compute under
the optimal task
graph partition

Decide initial
partitioning

Search optimal
partitioning

Allocate
tasks to
sockets

Cache-friendly
task graph partitioner

Triple level work-
stealing scheduler

Load-balanced
task allocator

Fig. 4.5 The processing flow of an iterative program in LAWS

As we discussed in Chap. 3, the large data set often results in the TRICI problem in
multi-socket multi-core architecture. To utilize the shared cache efficiently, LAWS
further leverages the cache-friendly task graph partitioner to packs the tasks allocated
to each socket into a large number of CF subtrees that will be executed sequentially
based on runtime information collected in the first iteration. Because tasks in the
same CF subtree often share some data, the shared data is only read into the shared
cache once but can be accessed by all the tasks of the same CF subtree. In this way,
the shared cache can be better utilized.

For instance, in Fig. 4.1, the tasks filled with the same color consist of the part
of the whole task graph allocated to a socket, and the subtree in each ellipse is a
CF subtree. In the first several iterations, the partitioner automatically adjusts the
partition of task graph to search for the optimal one that results in the minimum
makespan. Because the task graphs of different iterations are the same and the tasks
in the same position of the task graphs work on the same part of the data set in an
iterative program, the optimal partition for the completed iterations is also optimal
for future iterations. Once the optimal partition is found, LAWS partitions the task
graph in all the following iterations in a way suggested by the optimal partition.

LAWS adopts a triple-level work-stealing scheduler to schedule tasks in each
iteration. The tasks in the same CF subtrees are scheduled within the same socket. If
a socket completes all its CF subtrees, it steals a CF subtree from a randomly-chosen
socket in order to resolve the possible slight load-unbalance from the task allocator.

4.5 Load-Balanced Task Allocator

The purpose of the load-balanced task allocator is to balance the workload across all
the available sockets, and make sure most of the tasks can find their data from the
local memory nodes. In LAWS, the load-balanced task allocator is proposed based
on an assumption that a task divides its data set into several parts evenly according
to its branching degree. This assumption is true in emerging well-designed divide-
and-conquer parallel programs.

In order to achieve the above design purpose, the load-balanced task allocator
should satisfy twomain constraints when allocating tasks to sockets. First, to balance
workload, the size of data processed by tasks allocated to each socket should be same

http://dx.doi.org/10.1007/978-981-10-6238-4_3

www.manaraa.com

4.5 Load-Balanced Task Allocator 89

[0,D)

[0,
D

2
)

[
D

2
,D)

[0,
D

M
) [(i 1)

D

M
,i

D

M
) [(M 1)

D

M
,D)

[Ds ,De)

1 j b

SiS1 SM

D

cM*Nc1
cN

CF
subtree

Sockets

Data set

Task graph

0

Fig. 4.6 Allocate the tasks of program p to the sockets of anM-socket NUMA-enabled architecture
in LAWS

in every iteration. Second, to reduce shared cache misses, the adjacent data should
be stored in the same memory node since adjacent data is processed by neighbor
tasks that should be scheduled to the same socket. Traditional random work-stealing
schedulers do not satisfy the two constraints due to the randomness of stealing. And
the CAB scheduler discussed in Chap.3 only satisfies the second constraint and does
not satisfy the first constraint.

We first model how the whole dataset of a parallel program is distributed to the
tasks. Suppose a program p runs on an M-socket architecture. If its data set is D, to
balance workload, the tasks allocated to each socket need to process 1

M of the whole
data set. Note that, in the load-balanced task allocator, we do not need to know the
real value of D. We use D to represent the whole data set for easy of description.
Without loss of generality, as shown in Fig. 4.6, LAWS makes sure that the tasks
allocated to the i-th (1 ≤ i ≤ M) socket should process the part of the whole data
set ranging from (i − 1) × D

M to i × D
M (denoted by [(i − 1) × D

M , i × D
M)).

To achieve the above objective, LAWSneeds to find out each task processes which
part of the whole data set. In LAWS, when a task is spawned, the part of its data set is
automatically calculated based on the structure of dynamically generated task graph.
Take task α that has b sub-tasks and processes the part of data set ranging from Ds

to De (denoted by [Ds , De)) in Fig. 4.6 as an example. When its j-th subtask α j is
spawned, the part of the data set that α j will process can be calculated by Eq.4.5.

[(j − 1) × De − Ds

b
+ Ds, j × De − Ds

b
+ Ds) (4.5)

http://dx.doi.org/10.1007/978-981-10-6238-4_3

www.manaraa.com

90 4 Work-Stealing for NUMA-enabled Architecture

Fig. 4.7 An example of allocating the tasks to the two sockets of a dual-socket NUMA-enabled
architecture

When we implement LAWS, all the parameters (i.e., b and j) in Eq.4.5 are
obtained automatically. LAWS records the branching degree of each task at compile
time by analyzing task generating pattern and calculates j in Eq.4.5 when α j is
generated.

Inmore detail, Fig. 4.7 gives an example of allocating the tasks to the two sockets of
a dual-socket architecture. The range of data beside each task is calculated according
to Eq.4.5. In the dual-socket architecture, the tasks that process the data set [0, D

2)

and [D2 , D) should be allocated to the first socket and the second socket respectively.
For instance, in Fig. 4.7, because α2 is responsible for processing data range [D3 , D

2)

that is within [0, D
2), it should be allocated to the first socket. Due to the same reason,

the slash-shaded tasks are allocated to the first socket and the mesh-shaded tasks are
allocated to the second socket. If a task is allocated to a socket, all its child tasks
are allocated to the same socket. For example, all the tasks rooted with α2 will be
allocated to the first socket.

LAWS records the part of data set stored in the memory node of each socket. By
comparing the data set processed by a task with the range of data set stored in each
socket, the task can be allocated to appropriate socket. Because the task allocator
allocates a task according to the range of its data set, in the following iterations, the
tasks processing the same part of the whole data set will be allocated to the same
socket. In this way, the tasks in all the iterations can find their data in the local
memory node, and the adjacent data is stored in the same memory node. Therefore,
the two constraints in designing the load-balanced task allocator are satisfied and the
first problem discussed in Sect. 4.2 in all the prior work-stealing schedulers will be
solved.

www.manaraa.com

4.6 Cache-Friendly Task Graph Partitioner 91

4.6 Cache-Friendly Task Graph Partitioner

On an M-socket architecture, the load-balanced task allocator divides the whole task
graph of a parallel program into M parts and allocates the M parts to the M sockets.
However, when the input data of the parallel program is large, each socket will still
have to execute a large number of tasks. In this case, the data involved in these tasks
are often too large to fit into the shared cache of a socket. To utilize the shared cache
efficiently, LAWS further divides the task graph allocated to each socket intomultiple
CF subtrees that will be executed sequentially.

It is worth noting that the work-stealing scheduler and each task often generate
some intermediate data during the execution of a program. Therefore, the precise
size of data involved in each task is not known during the execution of a parallel
program, even if the size of the whole input data of the program is known. It is
not trivial to further divide the task graph into CF subtrees lacking of precise data
usage information. In order to solve this problem, as described below, we use an
auto-running approach based on online-collected profiling information to search for
the optimal task graph partitioning.

The following technique of partitioning task graph into CF subtrees only works
for iterative programs because it relies on the processing time of different iterations
to identify the optimal partition. For non-iterative programs, the compiling-based
technique proposed in Sect. 3.4.2.1 can be used to partition the task graph into CF
subtrees.

4.6.1 Decide the Initial Partitioning

Similar to LAB task scheduler presented in Chap.3, the task graph partitioner makes
sure that the data accessed by all the intra-socket tasks in each CF subtree can be
fully stored into the shared cache of a socket. Note the tasks in the same CF subtree
(called intra-socket tasks) are scheduled in the same socket and the root task of a CF
subtree is called a CF root task. In this way, the data shared by tasks in the same CF
subtree is read into the shared cache once but can be shared and accessed by all the
tasks.

To achieve the above objective, we need to know the size of shared cache
used by each task, which cannot be collected directly. Recall that we have intro-
duced the profiling-based technique that can be used to calculated this parameter
in Sect. 3.4.2.2. In the cache-friendly task graph partitioner, we leverage the same
technique to calculate this parameter. In other words, to circumvent this problem, in
the first iteration, for any task α, LAWS collects the number of last level private cache
(e.g. L2) misses caused by it. The size of shared cache used by α can be estimated
as the number of the above cache misses times the cache line size (e.g., 64 bytes).

For easing of description, we describe the technique here briefly again. For task α,
we calculate its SOID, which represents the Size Of Input Data used by all the tasks in

http://dx.doi.org/10.1007/978-981-10-6238-4_3
http://dx.doi.org/10.1007/978-981-10-6238-4_3
http://dx.doi.org/10.1007/978-981-10-6238-4_3

www.manaraa.com

92 4 Work-Stealing for NUMA-enabled Architecture

the subtree rooted with α. SOID of α is calculated in the bottom-up manner. Suppose
α has m direct child tasks α1, ..., αm and their SOIDs are S1, ..., Sm respectively.
SOID of α (denoted by Sα) can be calculated in Eq.4.6, where Mα equals to the
number of last level cache misses caused by α itself times the cache line size.

Sα = Mα +
m∑

i=1

Si (4.6)

Once all the tasks in the first iteration complete, SOIDs of all the tasks are calcu-
lated using Eq.4.6. Based on SOIDs of all the tasks, the cache-friendly task graph
partitioner can further divide the part of the task graph allocated to each socket into
CF subtrees by identifying all the CF root tasks (known as leaf inter-socket tasks in
Chap.3) as follows.

Let Sc represent the shared cache size of a socket. Suppose α’s parent task is β,
and their SOIDs are Sα and Sβ respectively. Then, if Sα ≤ Sc and Sβ > Sc, α is a CF
root task, which means all the data involved in the descendent tasks of α just fit into
the shared cache. If Sβ < Sc, α is an intra-socket task. Once all the CF root tasks are
identified, the initial task graph partition is determined.

4.6.2 Search for the Optimal Partitioning

If Sα in Eq.4.6 precisely equals to the real size of shared cache used by the subtree
rooted with α, the data involved in any CF subtree would not exceed the capacity of
a socket’s shared cache.

However, Sα is only a close approximation due to the following reasons. Suppose
tasks α1 and α2 in the subtree rooted with α share some data. Although they are
allocated to the same socket by the load-balanced task allocator, they can be executed
by different cores. In this case, both α1 and α2 need to read the shared data to the
last level private cache and thus the size of the shared data is accumulated twice
in Eq.4.6. On the other hand, if some data stored in the shared cache has already
been pre-fetched into the private cache before, it does not incur last level private
cache misses and the size of the pre-fetched data is missed in Eq.4.6. The multiple
accumulation of shared data and the pre-fetching make Sα of Eq.4.6 slightly larger
or smaller than the actual size of shared cache used by the subtree rooted with α.

Due to the approximation in calculating the SOID of each task, the initial task
graph partitioning found in Sect. 4.6.1 is only a near optimal task graph partitioning.
LAWS further uses an auto-tuning approach to search for the optimal task graph
partitioning. In the approach, the task graph partitioner divides the task graph into
CF subtrees differently in different iterations, records the execution time of each
iteration, and chooses the partition that results the shortest processing time as the
optimal partition.

http://dx.doi.org/10.1007/978-981-10-6238-4_3

www.manaraa.com

4.6 Cache-Friendly Task Graph Partitioner 93

: CF subtrees are too large

: Optimal partitioning

: CF subtrees are too small

Large Small

Pr
oc

es
si

ng
 ti

m
e

CF subtree

Fig. 4.8 Processing time of an iteration in a parallel program when the task graph is partitioned
into subtrees of different sizes

Figure4.8 shows the execution time of an iteration when the task graph is parti-
tioned differently. If CF subtrees are too large (contain too many intra-socket tasks,
point 1 in Fig. 4.8), the data accessed by tasks in each CF subtree cannot be fully
stored in the shared cache of a socket. On the other hand, if CF subtrees are too small
(contain too few intra-socket tasks, point 3 in Fig. 4.8), the data accessed by tasks in
each CF subtree is too small to fully utilize the shared cache.

Because we have found a good start point of the task graph partitioning in the
previous step, starting from the initial partitioning of the task graph into CF subtrees
found in Sect. 4.6.1, the task graph partitioner evaluates how the different partitioning
performs. In more detail, LAWS first evaluates how the smaller CF subtrees perform.
If smaller CF subtrees result in shorter processing time of an iteration (point 1 in
Fig. 4.8), CF subtrees in the initial partitioning are too large. In this case, the task
graph partitioner evaluates the partition that has smaller and smaller CF subtrees
until the partitioning that results in the shortest processing time (point 2 in Fig. 4.8)
is found. If smaller CF subtrees result in longer processing time of an iteration (point
3 in Fig. 4.8), CF subtrees in the initial partitioning are too small. In this case, the
task graph partitioner evaluates the partition that has larger and larger CF subtrees
instead until the optimal partitioning is found.

Algorithm 6 gives the auto-tuning algorithm for searching the optimal way to
partition the task graph allocated to a socket into smaller CF subtrees. To generate
larger or smaller CF subtrees, we select the parent tasks or child tasks of the current
CF root tasks as the new CF root tasks.

Since the initial partitioning is already near-optimal, LAWS can find the optimal
task graph partition in a small number of iterations. Theoretically, it has a small
possibility that some CF subtrees are too large while some other CF subtrees are too
small. However, since there are a great many CF subtrees in a task graph, it is too
complex to tune the size of every CF subtrees independently in a small number of
iterations at runtime. To simplify the problem, we increase or decrease the size of all
the CF subtrees at the same time in Algorithm 6. We will have the evaluation of the
auto-tuning strategy in Sect. 4.10.3.

www.manaraa.com

94 4 Work-Stealing for NUMA-enabled Architecture

Algorithm 6Algorithm for searching the optimal way to divide a task graph into CF
subtrees
Require: α1, ..., αm (CF root tasks in the initial partition)
Require: T (Processing time of an iteration under the initial partitioning)
Ensure: Optimal CF root tasks
1: int Tn = 0, Tc = T ; // New & current processing time
2: int EvalLarger = 1; //Eval. larger subtrees?
3: void EvaluateNewPartitioning () {
4: Execute an iteration under the new partitioning ;
5: Record the processing time Tn ;
6: }
7: SearchOptimalPartitioning () {
8: while CF root tasks have child tasks do
9: Set child tasks of the current CF root tasks as the new CF root tasks ;
10: EvaluateNewPartitioning() ;
11: if Tn < Tc then
12: Tc = Tn ; Save new CF root tasks ;
13: EvalLarger = 0 ; //Point 1, do not evaluate larger subtrees
14: else
15: break ;
16: end if
17: end while
18: if EvalLarger == 1 then
19: Restore CF root tasks to {α1, ..., αm} ; //Point 3, evaluate larger subtrees
20: Tc = T ;
21: while CF root tasks have parent tasks do
22: Set parent tasks of the current CF root tasks as the new CF root tasks;
23: EvaluateNewPartitioning() ;
24: if Tn < Tc then
25: Tc = Tn ;
26: Save new CF root tasks ;
27: else
28: break ;
29: end if
30: end while
31: end if
32: }

4.7 Triple-Level Work-Stealing Policy

In this section, we present how the scheduling policy in LAWSworks so that the tasks
are scheduled as required by the load-balanced task allocator and the cache-friendly
task graph partitioner. Similar to the bi-tier work-stealing policy proposed to improve
the shared cache utilization in Chap.3, LAWS leverages a triple-level work-stealing
policy to improve both the shared cache utilization and the NUMA memory system
utilization.

Figure4.9 gives the runtime architecture of LAWS on an M-socket architec-
ture employed NUMA-based memory system, and illustrates the triple-level work-
stealing policies in LAWS. In Fig. 4.9, the main memory is divided into M memory

http://dx.doi.org/10.1007/978-981-10-6238-4_3

www.manaraa.com

4.7 Triple-Level Work-Stealing Policy 95

Fig. 4.9 Runtime architecture of LAWS on an M-socket architecture with NUMA-based memory
system

nodes and node Ni is the local memory node of socket ρi . In each socket, core “0”
is selected as the head core of the socket.

Observed from Fig. 4.9, for each socket, LAWS creates a CF task pool to store
CF root tasks allocated to the socket and the tasks above the CF root tasks in the task
graph. For each core, LAWS creates an intra-socket task pool to store the intra-socket
tasks. Suppose a core c in socket ρ is free, in different phases, it obtains new tasks
in different ways as follows.

In the first iteration of an iterative program (or the independent initialization phase
if the program has the phase), there is no intra-socket task and all the tasks are pushed
into CF task pools since the task graph has not been divided into CF subtrees. In the
period, core c in the socket ρ can only obtain a new task from the CF task pool of ρ.
Core c is not allowed to steal a task from other sockets because the data set of a task
will be stored into the wrong memory node if it is stolen in the first iteration due to
the first touch strategy.

Starting from the second iteration, the task graph of each iteration has been divided
into multiple CF subtrees. Adopting triple level work-stealing policy, a free core c
can steal a new task from three levels: intra-socket task pool of other cores in its
socket ρ, CF task pool of ρ, and CF task pools of other sockets. More precisely,
when c is free, it first tries to obtain a task from its own intra-socket task pool. If its
own task pool is empty, (1) c tries to steal a task from the intra-socket task pools of
other cores in ρ. If the task pools of all the cores in ρ are empty and c is the head core
of ρ, (2) c tries to obtain a new CF root task from ρ’s CF task pool. If ρ’s CF task
pool is also empty and c is the head core of ρ, (3) c tries to steal a task from CF task
pools of other sockets. In other words, LAWS allows a socket to help other sockets
execute their CF subtrees. Although ρ needs longer time to process the CF subtrees
that are allocated to other sockets, the workload is balanced and the performance of
memory-bound programs can be improved.

It is worth noting that the CF subtrees allocated to each socket are executed
sequentially in LAWS. In other words, cores in the same socket are not allowed to
execute tasks inmultiple CF subtrees concurrently. This policy can avoid the situation

www.manaraa.com

96 4 Work-Stealing for NUMA-enabled Architecture

that tasks in different CF subtrees pollute the shared caches with different data sets.
A socket is only allowed to steal entire CF subtrees from other sockets for optimizing
shared cache usage.

4.8 Theoretical Validation

In previous sections, we already present how LAWS splits the data set of a parallel
program, and schedules the parallel tasks so that the data locality can be improved
practically. Besides the actual design of LAWS, wn this section, we theoretically
show that LAWS can improve the performance of memory-bound programs through
locality-aware task scheduling compared with traditional random work-stealing.

Without loss of generality, in this section we analyze the divide-and-conquer pro-
grams that have tree-shaped task graphs. Divide-and-conquer programs are often
the targeted programs of emerging work-stealing environments, e.g., TBB [27],
Cilk++ [23] and X10 [22] etc. After analyzing memory-bound divide-and-conquer
programs carefully, we find that they often have three main features. First, only leaf
tasks physically access the data while other tasks divide the data set recursively into
smaller pieces. Second, each leaf task only processes a small part of the whole data
set of the program. Third, the execution time of a leaf task is decided by its data access
time. Based on the three main features, the rest of this section proves that LAWS can
improve the performance of memory-bound divide-and-conquer programs theoreti-
cally.

Consider a memory-bound program that runs on an M-socket architecture. Sup-
pose a leaf task α in its task graph is responsible for processing data of S bytes and
α still accesses B bytes of boundary data besides its own part of data. Let Vl and
Vr represent the speeds (bytes/cycle) of a core to access data from local memory
node and remote memory nodes respectively. Needless to say, Vl > Vr in NUMA-
based memory system. Table4.2 lists the parameters used to validate that LAWS can
improve the performance of memory-bound programs compared with the random
work-stealing.

Ifwe adopt a randomwork-stealing scheduler, e.g.,MITCilk andTBB, to schedule
the program, the probability that α can access all the data from local memory node is
1/M . Therefore, the cycles expected for α to access all the needed data in traditional
work-stealing (denoted by TR) can be calculated by Eq.4.7.

TR = S + B

Vl
× 1

M
+ S + B

Vr
× M − 1

M
(4.7)

If we adopt LAWS to schedule the program, benefit from the load-balanced task
allocator, α can access its own part of data from local memory node. As a conse-
quence, the cycles needed by α to access all the needed data in LAWS (denoted
by TL) can be calculated by Eq.4.8, because α also has a high chance to access its
boundary data from local memory node.

www.manaraa.com

4.8 Theoretical Validation 97

Table 4.2 Parameters used in the theoretical validation

Parameters Description

M Number of sockets

B Size of boundary data between two neighbor
leaf tasks

S Size of data allocated to a leaf task

Vl Speed of a core to access data from the local
memory node

Vr Speed of a core to access data from a remote
memory node

TR Time of reading data for a leaf task with
random work-stealing

TL Time of reading data for a leaf task with LAWS

TL ≤ S

Vl
+ B

Vr
(4.8)

Deduced from Eqs. 4.7 and4.8, we can get Eq.4.9.

TR − TL ≥ (M − 1) × S − B

M × Vr
− (M − 1) × S − B

M × Vl

= (M − 1) × S − B

M × Vr
− (M − 1) × S − B

M × Vl

= (
1

M × Vr
− 1

M × Vl
) × [(M − 1) × S − B]

(4.9)

InEq.4.9, becauseVr < Vl , we can know 1
M×Vr

− 1
M×Vl

> 0. Therefore, TR−TL >

0 if (M − 1) × S − B > 0 that is always true in almost all the divide-and-conquer
programs empirically since a task’s own data set (S) is always far larger than its
boundary data (B). In summary, we prove that α needs shorter time to access all the
needed data in LAWS compared with the random work-stealing scheduler.

Because leaf tasks need shorter time to access their data in LAWS than in tra-
ditional random work-stealing schedulers, LAWS can always improve the perfor-
mance of memory-bound divide-and-conquer programs even when the optimization
on reducing shared cache misses in LAWS is not taken into account.

4.9 Implementation Methodology

LAWS can be implemented in a similar way the CAB scheduler (Chap.3) was imple-
mented. As we presented in Sect. 3.5.2, two types of task-generating policies, child-
first and parent-first, can be adopted when generating new tasks. In parent-first policy

http://dx.doi.org/10.1007/978-981-10-6238-4_3
http://dx.doi.org/10.1007/978-981-10-6238-4_3

www.manaraa.com

98 4 Work-Stealing for NUMA-enabled Architecture

(called help-first policy in [17]), a core continually executes the parent task after
spawning a new task. In child-first policy (called work-first policy in [5]), a core
continually executes the spawned new task once the child is spawned. Parent-first
policy works better when the steals are frequent, while child-first policy works better
when the steals are infrequent [17].

During the first iteration, LAWS adopts the parent-first policy to generate new
tasks, because it is difficult to collect the numbers of last level private cache misses
caused by each task with the child-first policy. If a core is executing a task α, with the
child-first policy, it is very likely the core will also execute some of α’s child tasks
before α is completed. In this case, the number of last level cache misses caused by
α itself, which is used to calculate SOIDs of tasks, may not be collected correctly
as it could include the number of last level private cache misses of α’s child tasks.
Starting from the second iteration, LAWS generates tasks above CF root tasks with
the parent-first policy since the steals are frequent in the beginning of each iteration.
LAWS generates intra-socket tasks with the child-first policy since the steals are
infrequent in each CF subtree.

We have modified the cilk2c compiler to support both the parent-first and child-
first task-generating policy while the original Cilk only support the child-first policy.
If a task α is spawned in the first iteration, the task is spawned with the parent-first
policy and is pushed to the appropriate CF task pool based on the method in Sect. 4.5.
If α is spawned in the later iterations and it is an intra-socket task, LAWS spawns α

with the child-first policy and pushes α into the intra-socket task pool of the current
core. Otherwise, if α is a CF root task or a task above CF root tasks, and it is allocated
to socket ρ, it is spawned with the parent-first policy and pushed into ρ’s CF task
pool.

4.10 Performance Evaluation of LAWS

In this section, we evaluate the performance of the introduced locality-aware work-
stealing scheduler: LAWS. In the beginning, we introduce the two experimental
hardware platforms used in the experiment. Then, on each experimental platform,
we present the experimental results respectively. More precisely, we present the per-
formance of LAWS for the memory-bound benchmarks, the effectiveness of the
load-balanced task allocator and the cache-friendly task graph partitioner respec-
tively, the scalability and the overhead of LAWS.

4.10.1 Experimental Platforms

We use both a Intel-based sever and an AMD-based server to evaluate the per-
formance of LAWS. Table4.3 lists the detailed hardware configurations. In the

www.manaraa.com

4.10 Performance Evaluation of LAWS 99

Table 4.3 Configurations of the experimental platforms

AMD-based server CPU AMD Opteron 8380

Num of sockets 4

Cores per socket 4

L2 cache (per core) 512KB

L3 cache (per socket) 6MB

DRAM 16GB

Operating System Linux 3.2.0-14

Intel-based server CPU Intel Xeon X7560

Num of sockets 4

Cores per socket 8 cores (16 HW threads)

L2 cache (per core) 2MB

L3 cache (per socket) 24MB

DRAM 64GB

Operating system Linux 3.13.0-13

Intel-based server, Intel hyper-threading (HT) technology that delivers two process-
ing threads per physical core is disabled.

Wecompare the performance ofLAWSwith the performance ofCilk [5] andCAB-
GTO that is presented in Chap.3. Cilk uses the pure child-first policy to spawn and
schedule tasks. Similar to LAWS, CAB-GTO also packs the task graph of a parallel
program into subtrees to reduce shared cache misses in MSMC architectures. Once
a task graph is packed in CAB-GTO, the partitioning cannot be adjusted at runtime
even the partitioning is not optimal. In addition, CAB-GTO did not consider the
underlying NUMA memory system.

For fairness in comparison, we also implement CAB-GTO by modifying Cilk
and we have improved CAB-GTO so that it also allocates the data evenly to all
the memory nodes in the first iteration as LAWS does. The Cilk programs run with
CAB-GTO and LAWS without any modification. In our experiment, the number of
workers (i.e., threads) launched in Cilk, CAB-GTO and LAWS equals to the number
of physical cores in the hardware platform. Furthermore, to avoid any performance
variation due to OS level thread scheduling, we pin each worker with an individual
hardware core.

To evaluate the performance of LAWS in different scenarios, we use benchmarks
listed in Table4.4 that have both regular task graph and irregular task graph in the
experiment. Since there are no standardized large-scale benchmarks available for
work-stealing schedulers so far, most of the benchmarks are examples in the MIT
Cilk package. We port the other benchmarks in the same way the examples of MIT
Cilk are developed. The benchmarks we used are the same as in previous papers [5,
18]. According to our experiment in Sect. 4.10.4, for current benchmarks, the larger
the makespan, the better LAWS performs, which indicates the potential benefit of
LAWS for large-scale benchmarks.

http://dx.doi.org/10.1007/978-981-10-6238-4_3

www.manaraa.com

100 4 Work-Stealing for NUMA-enabled Architecture

Table 4.4 Benchmarks used in the experiments

Name Bound type Description

Heat/Heat-ir Memory-bound 2D heat distribution algorithm

SOR/SOR-ir Memory-bound Successive over-relaxation algorithm

GE/GE-ir Memory-bound Gaussian elimination algorithm

9P/9P-ir Memory-bound 2D 9-point stencil computing algorithm

6P/6P-ir Memory-bound 3D 6-point stencil computing algorithm

25P/25P-ir Memory-bound 3D 25-point stencil computing algorithm

Mandelbrot CPU-bound Algorithm of calculating mandelbrot set

Queens(15) CPU-bound N-queens problem

FFT CPU-bound Fast fourier transform algorithm

GA CPU-bound Island model of genetic Algorithm

Knapsack CPU-bound 0–1 knapsack problem

Heat-ir, GE-ir, SOR-ir, 9P-ir, 6P-ir and 25P-ir implement the same algorithm as
their counterparts respectively, except their task graphs are irregular. We create the
programs with irregular task graphs in the same way in Sect. 3.8.2. If all the nodes
(except the leaf tasks) in the DAG have the same branching degrees, the task graph
is regular. All benchmarks are compiled with “-O2”. For each test, every benchmark
is run ten times and the average execution time is reported as the result.

4.10.2 Performance of LAWS

Figure4.10 shows the performance of memory-intensive benchmarks in Cilk, CAB-
GTO and LAWS on an AMD-based server and an Intel-based server.

On the AMD-based server, for Heat, Heat-ir, SOR, SOR-ir, 9P and 9P-ir the
input data used is a 8096 × 1024 matrix. For GE and GE-ir, the input data used is
a 2048 × 2048 matrix due to algorithm constraint. For 6P, 6P-ir, 25P and 25P-ir,
the input data is a 8096 × 64 × 64 3D matrix. On the Intel-based server, for Heat,
Heat-ir, SOR, SOR-ir, 9P and 9P-ir the input data used is a 8096 × 4096 matrix.
For GE and GE-ir, the input data used is a 8192 × 8192 matrix due to algorithm
constraint. For 6P, 6P-ir, 25P and 25P-ir, the input data is a 8096 × 128 × 128 3D
matrix.

As we can see from Fig. 4.10, on the AMD-based server, LAWS can significantly
improve the performance of benchmarks compared with Cilk while the performance
improvement ranges from 23.5 to 54.2%. CAB-GTO can also improve the perfor-
mance of benchmarks up to 19.6% compared with Cilk. On the Intel-based server,
LAWScan also significantly improve the performance of benchmarks comparedwith
Cilk while the performance improvement ranges from 12.5 to 48.6%. CAB-GTO can
also improve the performance of benchmarks up to 28.1% compared with Cilk.

http://dx.doi.org/10.1007/978-981-10-6238-4_3

www.manaraa.com

4.10 Performance Evaluation of LAWS 101

Fig. 4.10 The performance
of memory-bound
benchmarks in Cilk,
CAB-GTO, LAWS-NC and
LAWS

(a) AMD-based server

(b) Intel-based server

In MSMC architectures, the performance of a memory-bound application is
decided by the straggler socket that seldom access data from its local memory node
because the tasks in the straggler socket need the longest time to access their data.
During the execution of a memory-bound application, any socket in the MSMC
architecture can be the straggler socket.

To explain why LAWS outperforms both Cilk and CAB-GTO for memory-bound
applications on both AMD-based server and Intel-based server, we also collect the
shared cache misses (Event “LLC_MISSES”) and the local memory accesses of the
straggler socket using “libpfm” library in Linux. For each benchmark, Table4.5 lists
its shared cache misses and the local memory accesses of the straggler socket in Cilk,
CAB-GTO and LAWS.

Observed fromTable4.5,we canfind that the shared cache (L3)misses are reduced
and the local memory accesses of the straggler socket are prominently increased
in LAWS compared with Cilk and CAB-GTO. Since LAWS schedules tasks to the
sockets where the local memory nodes store their data, the tasks can access their data
from local memory node and thus the local memory accesses have been significantly
increased. Furthermore, since LAWS packs tasks allocated to each socket into CF
subtrees to preserve shared data in shared cache, the shared cache misses are also
reduced.

www.manaraa.com

102 4 Work-Stealing for NUMA-enabled Architecture

Ta
bl
e
4.
5

Sh
ar
ed

ca
ch
e
m
is
se
s
an
d
lo
ca
lm

em
or
y
ac
ce
ss
es

of
th
e
st
ra
gg

le
r
so
ck
et

R
eg
ul
ar

be
nc
he
s

H
ea
t

SO
R

G
E

6P
9P

25
P

A
M
D
-b
as
ed

se
rv
er

L
3
ca
ch
e
m
is
se
s

C
ilk

5.
72

E
8

1.
15

E
9

2.
20

E
8

2.
52

E
9

5.
73

E
8

2.
48

E
9

C
A
B
-G

T
O

5.
31

E
8

1.
07

E
9

1.
47

E
8

2.
42

E
9

5.
39

E
8

2.
38

E
9

L
A
W
S

4.
62

E
8

1.
01

E
9

2.
91

E
7

2.
38

E
9

5.
05

E
8

2.
34

E
9

L
oc
al
m
em

or
y
ac
ce
ss
es

C
ilk

1.
61

E
7

3.
28

E
7

6.
1E

6
8.
15

E
7

1.
72

E
7

8.
32

E
7

C
A
B
-G

T
O

2.
13

E
7

4.
14

E
7

4.
5E

6
1.
01

E
8

2.
19

E
7

9.
06

E
7

L
A
W
S

2.
58

E
7

5.
71

E
7

6.
5E

5
1.
51

9E
8

2.
72

E
7

1.
25

E
8

In
te
l-
ba
se
d
se
rv
er

L
3
C
ac
he

m
is
se
s

C
ilk

1.
19

E
9

2.
39

E
9

7.
82

E
8

3.
48

E
9

9.
41

E
8

2.
31

E
9

C
A
B
-G

T
O

1.
1E

9
2.
17

E
9

7.
68

E
8

3.
11

E
9

9.
27

E
9

2.
24

E
9

L
A
W
S

9.
96

E
8

2.
01

E
9

4.
96

E
8

3.
07

E
9

9.
23

E
8

2.
22

E
9

L
oc
al
m
em

or
y
ac
ce
ss
es

C
ilk

90
62

79
23

9
11

23
44

11
02

18
75

76
26

97
69

C
A
B
-G

T
O

17
10

5
72

52
2

13
33

41
10

64
69

48
85

20
16

11

L
A
W
S

27
56

3
99

51
0

14
51

26
13

11
65

27
64

3
37

36
82

Ir
re
gu

la
r
be
nc
he
s

H
ea
t-
ir

SO
R
-i
r

G
E
-i
r

6P
-i
r

9P
-i
r

25
P-
ir

A
M
D
-b
as
ed

Se
rv
er

L
3
ca
ch
e
m
is
se
s

C
ilk

5.
74

E
8

1.
01

E
9

2.
30

E
8

2.
54

E
9

5.
77

E
8

2.
48

E
9

C
A
B
-G

T
O

5.
42

E
8

8.
86

E
8

1.
13

E
8

2.
36

E
9

4.
69

E
8

2.
37

E
9

L
A
W
S

5.
05

E
8

8.
76

E
8

2.
87

E
7

2.
34

E
9

4.
46

E
8

2.
35

E
9

L
oc
al
m
em

or
y
ac
ce
ss
es

C
ilk

1.
72

E
7

2.
9E

7
5.
64

E
6

7.
44

E
7

1.
53

E
7

8.
15

E
7

C
A
B
-G

T
O

1.
86

E
7

3.
04

E
7

3.
58

E
6

9.
73

E
7

1.
93

E
7

8.
58

E
7

L
A
W
S

2.
75

E
7

3.
93

E
7

4.
7E

5
1.
34

7E
8

2.
48

E
7

1.
18

E
8

In
te
l-
ba
se
d
Se
rv
er

L
3
ca
ch
e
m
is
se
s

C
ilk

1.
17

E
9

2.
43

E
9

8.
35

E
8

2.
85

E
9

9.
42

E
8

2.
35

E
9

C
A
B
-G

T
O

1.
05

E
9

2.
19

E
9

8.
16

E
8

2.
78

E
9

9.
41

E
9

2.
27

E
9

L
A
W
S

9.
9E

8
1.
97

E
9

4.
97

E
8

2.
38

E
9

9.
33

E
8

2.
23

E
9

L
oc
al
m
em

or
y
ac
ce
ss
es

C
ilk

84
44

71
72

3
12

13
24

86
82

2
41

42
26

68
48

C
A
B
-G

T
O

10
30

9
79

01
9

14
17

26
92

80
4

52
50

24
82

04

L
A
W
S

24
56

9
10

28
33

14
71

61
12

57
22

19
40

6
38

12
67

www.manaraa.com

4.10 Performance Evaluation of LAWS 103

Only for GE and GE-ir on AMD-based server, the local memory accesses of the
straggler socket are not increased in LAWS. This is because their input data is small
enough to be put into the shared cache directly. In this situation, most tasks can
access the data from the shared cache directly and do not need to access the main
memory any more. Because the L3 cache misses are prominently reduced, LAWS
can still significantly improve the performance of GE and GE-ir compared to Cilk
and CAB-GTO. The performance improvement of the benchmarks in CAB-GTO is
due to the reduced shared cache misses. However, since CAB-GTO cannot divide a
task graph optimally like LAWS, it still has more shared cache misses than LAWS
as shown in Table4.5.

Careful readers may find that CAB-GTO performs much worse here than in
Chap.3. While CAB-GTO can only improve the performance of benchmarks up to
19.6% here, it can improve their performance up to 74.4% in Sect. 3.8.2. The reduc-
tion of performance improvement of CAB-GTO comes from the much larger input
data set used in this chapter. This result matches with the findings in Chap. 3. That
is, with the increasing of the size of the input data set, the percentage of shared data
among tasks decreases and the effectiveness of CAB-GTO degrades in consequence.

4.10.3 Effectiveness of Cache-Friendly Task Graph
Partitioner

Toevaluate the effectiveness of the cache-friendly task graph partitioner inLAWS,we
compare the performance of LAWSwith LAWS-NC, a scheduler that only schedules
each task to the socket where the memory node stores its part of data but does not
further pack the tasks into CF subtrees.

From Fig. 4.10 we find that LAWS-NC performs better than Cilk and CAB-GTO.
This is because most tasks in LAWS-NC can access their data from local memory
nodes. However, since tasks are not packed into CF subtrees for optimizing shared
cache in LAWS-NC, LAWS-NC incurs more shared cache misses and performs
worse than LAWS.

To evaluate the auto-tuning approach (Algorithm 6) proposed to optimally pack
tasks into CF subtrees, Fig. 4.11 gives the execution time of 200 iterations of all
the benchmarks with irregular task graphs in LAWS on AMD-based server and the
execution time of 200 iterations of all the benchmarks with regular task graphs in
LAWS on Intel-based server. All the other benchmarks give similar result. From
the figure we find that the execution time of an iteration in all the benchmarks is
significantly reduced after the optimal partitioning is found in several iterations.

In summary, the cache-friendly task graph partitioner in LAWS is effective and the
auto-tuning algorithm for searching the optimal partitioning of tasks in Algorithm6
works also fine.

http://dx.doi.org/10.1007/978-981-10-6238-4_3
http://dx.doi.org/10.1007/978-981-10-6238-4_3
http://dx.doi.org/10.1007/978-981-10-6238-4_3

www.manaraa.com

104 4 Work-Stealing for NUMA-enabled Architecture

Fig. 4.11 Execution time of
each iteration in all the
benchmarks in LAWS on
AMD-based server and
Intel-based server

(a) AMD-based server

(b) Intel-based server

4.10.4 Scalability of LAWS

To evaluate scalability of LAWS, we compare the performance of benchmarks with
different input data sizes in Cilk, CAB-GTO and LAWS.

During the execution of all the benchmarks, every task divides its data set into
several parts by rows to generate child tasks unless the task meets the cutoff point
(i.e., the rows of a leaf task, and 8 rows is used in the experiment). Since the data set
size of the leaf tasks affects the measurement of scalability, we ensure that the data
set size of the leaf tasks is constant by using a constant cutoff point for the leaf tasks.
On AMD-based server, if the input data is an x × y 2D matrix, we set y = 1024 for
all the input 2D matrix. If the input data is an x × y × z 3D matrix, we set y = 64
and z = 64 for all the input 3D matrix. On Intel-based server, if the input data is an
x × y 2D matrix, we set y = 4096 for all the input 2D matrix. If the input data is an
x × y × z 3D matrix, we set y = 128 and z = 128 for all the input 3D matrix.

We only adjust the x of the input matrices in the experiment. In this way, we can
measure the scalability of LAWS without the impact of the granularity of the leaf
tasks. In all the following figures, the x-axis represents the x of the input matrixes.

We useHeat-ir and 6P onAMD-based server, SOR-ir and 9P on Intel-based server
as benchmarks to evaluate the scalability of CAB-GTO in scenario that applications
with a regular task graph and an irregular task graph. All the other benchmarks have
similar results. We omit them here due to the limited space.

www.manaraa.com

4.10 Performance Evaluation of LAWS 105

(a) Heat-ir (b) 6P

Fig. 4.12 Performance of Heat-ir and 6P with different input data sizes on the AMD-based server

(a) SOR-ir (b) 9P

Fig. 4.13 Performance of SOR-ir and 9P with different input data sizes on the Intel-based server

Figures4.12 and4.13 show the performance of benchmarks with different input
data sizes in Cilk, CAB-GTO and LAWS. We can find that Heat-ir, 6P, SOR-ir and
9P achieve the best performance in LAWS for all input data sizes. When the input
data size is small (i.e., x = 1k), LAWS reduces 30.4% execution time of Heat-ir
and reduces 36.6% execution time of 6P compared with Cilk on AMD-based server.
When the input data size is large (i.e., x = 16k), LAWS reduces 43.6% execution
time of Heat-ir and reduces 45.8% execution time of 6P compared with Cilk on
AMD-based server. When the input data size is small (i.e., x = 2k), LAWS reduces
52.5% execution time of SOR-ir and reduces 34.9% execution time of 9P compared
with Cilk on Intel-based server. When the input data size is large (i.e., x = 32k),
LAWS reduces 42.7% execution time of SOR-ir and reduces 24.7% execution time
of 9P compared with Cilk on Intel-based server.

In Figs. 4.12 and4.13, the execution time of benchmarks in Cilk, CAB-GTO and
LAWS increases linearly with the increasing of their input data sizes. Since their
execution time increases much slower in LAWS than in Cilk and CAB-GTO, for all
the input data sizes, LAWS can always reduce the execution time of memory-bound
applications. In summary, LAWS is scalable in scheduling both regular task graphs
and irregular task graphs.

Corresponding to Figs. 4.12, 4.13, 4.14 and4.15 show the L3 cache misses and the
localmemory accesses of the straggler socket in executingHeat-ir, 6P, SOR-ir and9P

www.manaraa.com

106 4 Work-Stealing for NUMA-enabled Architecture

(a) L3 cache misses (Heat-ir) (b) Local memory accesses(Heat-ir)

(c) L3 cache misses (6P) (d) Local memory access (6P)

Fig. 4.14 L3 cache misses and local memory accesses of the straggler socket in Heat-ir and 6P on
AMD-based server

with different input data sizes. Observed from the figure, we can find that the shared
cache misses are reduced, while the local memory accesses of the straggler socket
are increased in LAWS. When the input data size is small (i.e., x = 1k), LAWS can
reduce 82% L3 cache misses and increase 132.1% local memory accesses compared
with Cilk. When the input data size is large (i.e., x = 16k), LAWS can reduce 17.3%
L3 cache misses and increase 70.6% local memory accesses compared with Cilk.

Figures4.14 and4.15 further explainwhyLAWSperformsmuch better thanCAB-
GTO. Since LAWS can optimally pack tasks into CF subtrees through auto-tuning,
it can reduce more L3 cache misses of memory-bound benchmarks than CAB-GTO.
In addition, since LAWS can schedule a task to the socket where the local memory
node stores its data, it significantly increases local memory accesses. The two key
advantages of LAWS result in the better performance of LAWS.

Careful readers may observe from Fig. 4.15 that LAWS failed to reduce the last
level shared cache misses for 9P on Intel-based server. However, because LAWS
significantly improve the local memory access, 9P still performs much better than
Cilk and CAB-GTO.

As we all know, if the input data of a memory-bound program is small, the shared
cache is big enough to store the input data. In this case, if the shared cache misses
are greatly reduced, the performance of memory-bound programs can be improved.
If the input data is large, the performance bottleneck of the program is the time of

www.manaraa.com

4.10 Performance Evaluation of LAWS 107

(a) L3 cache misses (SOR-ir) (b) Local memory accesses (SOR-ir)

(c) L3 cache misses (9P) (d) Local memory access (9P)

Fig. 4.15 L3 cache misses and local memory accesses of the straggler socket in SOR-ir and 9P on
Intel-based server

reading data from main memory. Therefore, CAB-GTO performs efficient when the
input data size is small but performs poor when the input data size is large. On the
contrary, because LAWS can increase more local memory accesses when input data
size gets larger, it performs even better when the input data is large. This feature of
LAWS is promising as the data size of a problem is becoming larger and larger.

4.10.5 Overhead of LAWS

Because LAWS aims to increase local memory accesses and reduce shared
cache misses, LAWS is neutral for CPU-bound programs. Based on the runtime
information, if LAWS finds that a program is CPU-bound, LAWS schedules tasks of
the program in traditional work-stealing. In Chap.5, we will introduce the technique
that can be used to improve the performance of CPU-bound programs by balancing
workloads among cores.

Figure4.16 shows the performance of several CPU-bound applications in Cilk,
CAB-GTOandLAWSonAMD-based server and Intel-based server. The applications
in this experiment are examples in Cilk package. By comparing the performance

http://dx.doi.org/10.1007/978-981-10-6238-4_5

www.manaraa.com

108 4 Work-Stealing for NUMA-enabled Architecture

Fig. 4.16 Performance of
CPU-bound benchmarks in
Cilk, CAB-GTO and LAWS
on AMD-based server and
Intel-based server

(a) AMD-based server

(b) Intel-based server

of CPU-bound applications in Cilk, CAB-GTO and LAWS, we can find the extra
overhead of LAWS.

Observed from Fig. 4.16, we see the extra overhead of LAWS is negligible (less
than 3% of the overall execution time) compared with Cilk and CAB-GTO. The
extra overhead of LAWS mainly comes from the overhead of distributing data to all
the memory node evenly and the profiling overhead in the first iteration of a parallel
program,whenLAWScan determine if the program isCPU-bound ormemory-bound
based on the profiling information.

4.10.6 Applicability of LAWS

LAWS assumes that the task graphs of different iterations in an iterative program
are the same. The assumption is true for most programs. Even if a program does
not satisfy this assumption, LAWS can still ensure that every task can access its

www.manaraa.com

4.10 Performance Evaluation of LAWS 109

data from local memory node since the load-balanced task allocator allocates tasks
to sockets in each iteration independently according to their data set in the current
iteration. However, in this situation, the optimization on shared cache utilization is
not applicable since the optimal partitioning for the past iterationsmay not be optimal
for future iterations due to the change of the task graph. In summary, even the above
assumption is not satisfied, LAWS can improve the performance of memory-bound
programs due to the increased local memory accesses.

As LAWS is neutral for CPU-bound programs, LAWS decides at runtime if an
application is CPU-bound based on profiled information.WhenLAWScollects cache
misses in the first iteration, it also collects the number of retired instructions of the
task through performance monitoring counter. If the cache miss intensity (i.e., cache
misses per instruction) of a task is smaller than a given threshold, the task is labelled
as CPU-bound. If most tasks of an application are CPU-bound, the application is
regarded as CPU-bound by LAWS.

4.11 Summary

Traditional work-stealing schedulers suffer from the shared cache polution and the
small number of local memory accesses in MSMC architectures with NUMA-based
memory system. To solve the two problems, we have proposed the LAWS scheduler,
which consists of a load-balanced task allocator, a cache-friendly task graph parti-
tioner and a triple-level work-stealing scheduler. The load-balanced task allocator
evenly distributes the data set of a program to all the memory nodes and allocates a
task to the socket where the local memory node stores its data for increasing local
memory accesses. Based on auto-tuning, for each socket, the cache-friendly task
graph partitioner can optimally pack the allocated tasks into CF subtrees to optimize
shared cache usage. The triple-level work-stealing scheduler schedules tasks in the
same CF subtree among cores in the same socket and makes sure that each socket
executes its CF subtrees sequentially. Experimental results show that LAWS can
improve the performance of memory-bound programs up to 54.2% on AMD-based
experimental platform and up to 48.6% on Intel-based experimental platform com-
pared with traditional work-stealing schedulers. Furthermore, the extra overhead of
LAWS for CPU-intensive applications is negligible.

4.11.1 Chapter Highlights

The following highlights of this chapter could be of your interest:

• We systematically analyze the poor data locality problem in emerging MSMC
architecture employed NUMA-based memory system.

www.manaraa.com

110 4 Work-Stealing for NUMA-enabled Architecture

• We propose a load-balanced task allocation policy that automatically allocates a
task to the particular socket where the local memory node stores its data and that
can balance the workload among sockets.

• We propose a cache-friendly task graph partitioner that can further pack a task
graph into Cache Friendly Subtrees (CF subtrees) for optimizing shared cache
usage based on online-collected information and auto-tuning.

• We propose a triple-level work-stealing policy to schedule tasks accordingly so
that a task can access its data from either the shared cache or the local memory
node other than the remote memory nodes.

• We demonstrate that LAWS significantly improves the performance of memory-
intensive applications. The experiment shows that LAWS can achieve a perfor-
mance gain of up to 54.2% onAMD-based experimental platform and up to 48.6%
on Intel-based experimental platform for memory-intensive applications.

References

1. U. Acar, G. Blelloch, and R. Blumofe. The data locality of work stealing. Theory of Computing
Systems, 35(3):321–347, 2002.

2. AMD. BIOS and Kernel Developer Guide (BKDG) For AMD Family 10 h Processors. AMD
(2010).

3. E. Ayguadé, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F.Massaioli, X. Teruel, P. Unnikrishnan,
and G. Zhang. The design of OpenMP tasks. IEEE TPDS, 20(3):404–418, 2009.

4. R. D. Blumofe. Executing Multithreaded Programs Efficiently. Ph.D. thesis, MIT, September
1995.

5. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou. Cilk:
An efficient multithreaded runtime system. Journal of Parallel and Distributed Computing,
37(1):55–69, 1996.

6. M. Castro, L. G. Fernandes, C. Pousa, J.-F. Méhaut, and M. S. de Aguiar. NUMA-ICTM: A
parallel version of ICTM exploiting memory placement strategies for NUMA machines. In
IPDPS, pp. 1–8, (2009).

7. Q. Chen and M. Guo. Adaptive workload aware task scheduling for single-ISA multi-core
architectures. ACM Transactions on Architecture and Code Optimization, 11(1) (2014).

8. Q. Chen, Y. Chen, Z. Huang, and M. Guo. WATS: Workload-aware task scheduling in asym-
metric multi-core architectures. In IPDPS, pp. 249–260 (2012).

9. Q. Chen, M. Guo, and Z. Huang. CATS: Cache aware task-stealing based on online profiling
in multi-socket multi-core architectures. In ICS, pp. 163–172 (2012).

10. Q. Chen, Z. Huang, M. Guo, and J. Zhou. CAB: Cache-aware bi-tier task-stealing in multi-
socket multi-core architecture. In ICPP, pp. 722–7320 (2011).

11. Q. Chen, and M. Guo. Locality-aware work stealing based on online profiling and auto-tuning
for multisocket multicore architectures. ACM Transactions on Architecture and Code Opti-
mization, 12(2):22, 2015.

12. R. Cole and V. Ramachandran. Analysis of randomized work stealing with false sharing. In
IPDPS, pp. 985–989 (2013).

13. M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5 multithreaded
language. In PLDI, pp. 212–223 (1998).

14. T. Gautier, J. V. Lima, N. Maillard, and B. Raffin. XKaapi: A runtime system for data-flow task
programming on heterogeneous architectures. In IPDPS, pp. 1299–1308 (2013).

15. T. Gautier, J. V. F. Lima, N. Maillard, B. Raffin, et al. Locality-aware work stealing on Multi-
CPU and Multi-GPU architectures. In MULTIPROG (2013).

www.manaraa.com

References 111

16. A. Gerasoulis and T. Yang. A comparison of clustering heuristics for scheduling directed
acyclic graphs on multiprocessors. Journal of Parallel and Distributed Computing, 16(4):276–
291, 1992.

17. Y. Guo, R. Barik, R. Raman, and V. Sarkar. Work- first and help-first scheduling policies for
async-finish task parallelism. In IPDPS, pp. 1–12 (2009).

18. Y.Guo, J. Zhao,V.Cave, andV.Sarkar. SLAW:a scalable locality-aware adaptivework–stealing
scheduler. In IPDPS, pp. 1–12 (2010).

19. L. V. Kale and S. Krishnan. CHARM++: a portable concurrent object oriented system based
on C++. ACM (1993).

20. G. Karypis and V. Kumar. A fast and high quality multilevel scheme for partitioning irregular
graphs. SIAM Journal on Scientific Computing, 20(1):359–392, 1998.

21. T. Kielmann, R. F. Hofman, H. E. Bal, A. Plaat, and R. A. Bhoedjang. Magpie: Mpis collective
communication operations for clustered wide area systems. In Proceeding 7th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Atlanta, GA. Citeseer (1999).

22. J. Lee and J. Palsberg. Featherweight X10: a core calculus for async-finish parallelism. In
PPoPP, pp. 25–36 (2010).

23. C. Leiserson. The Cilk++ concurrency platform. In DAC, pp. 522–527 (2009).
24. A. Muddukrishna, P. A. Jonsson, V. Vlassov, and M. Brorsson. Locality-aware task scheduling

and data distribution on numa systems. In OpenMP in the Era of Low Power Devices and
Accelerators, pp. 156–170. Springer (2013).

25. L. L. Pilla, C. P. Ribeiro, D. Cordeiro, A. Bhatele, P. O. Navaux, J.-F. Méhaut, L. V. Kalé, et al.
Improving parallel system performance with a NUMA-aware load balancer. TR-JLPC-11-02
(2011).

26. J.-N. Quintin and F. Wagner. Hierarchical work-stealing. In EuroPar, pp. 217–229 (2010).
27. J. Reinders. Intel threading building blocks. Intel (2007).
28. M. Shaheen and R. Strzodka. NUMA aware iterative stencil computations on many-core sys-

tems. In IPDPS, pp. 461–473 (2012).
29. S. Sridharan, G. Gupta, and G. S. Sohi. Holistic run-time parallelism management for time and

energy efficiency. In ICS, pp. 337–348 (2013).
30. B. Vikranth, R. Wankar, and C. R. Rao. Topology aware task stealing for on-chip NUMA

multi-core processors. Procedia Computer Science, 18:379–388, 2013.
31. R. Yang, J. Antony, A. Rendell, D. Robson, and P. Strazdins. Profiling directed NUMA opti-

mization on Linux systems: A case study of the Gaussian computational chemistry code. In
Proceedings of the International Parallel and Distributed Processing Symposium, pp. 1046–
1057, Anchorage, Alaska, USA. IEEE (2011).

32. R. M. Yoo, C. J. Hughes, C. Kim, Y.-K. Chen, and C. Kozyrakis. Locality-aware task manage-
ment for unstructured parallelism: a quantitative limit study. In SPAA, pp. 315–325 (2013).

33. R. Van Nieuwpoort, T. Kielmann, and H. E. Bal. Efficient load balancing for wide-area divide-
and-conquer applications. InACMSIGPLANSymposium onPrinciples and Practice of Parallel
Programming. Citeseer (2001).

www.manaraa.com

Chapter 5
Dynamic Load Balancing for Asymmetric
Multi-core Architecture

Abstract In Chaps. 3 and 4, we have introduced the techniques to improve the per-
formance of memory-bound applications on multi-socket architecture. In this chapter,
on the other hand, we introduce the scheduling techniques proposed to improve the
performance of CPU-bound applications. On Symmetric Multi-Core (SMC) architec-
ture in which all cores provide equal performance, traditional random work-stealing
performs well. However, while single-ISA Asymmetric Multi-Core (AMC) archi-
tectures have shown high performance as well as power efficiency, current parallel
programming environments do not perform well on AMC because they are designed
for SMC architectures. The random task scheduling policies used in current parallel
programming environments, such as work-sharing and work-stealing, can result in
unbalanced workloads in AMC and severely degrade the performance of parallel
applications. Essentially, it is a NP-hard problem to find the optimal task scheduling
on an AMC architecture. In order to balance the workloads of parallel applications in
AMC, in this chapter, we introduce an Asymmetric-Aware Task Scheduling (AATS)
methodology.

5.1 Chapter Organization

We have introduced the advantages of Asymmetric Multi-Core (AMC) architec-
ture in Chap. 1. However, despite the rapid development of the AMC technology,
current parallel programming environments as listed below, still assume all cores
provide equal performance. Due to this assumption, parallel applications cannot uti-
lize the asymmetric cores of an AMC architecture effectively. Most current parallel
programming environments adopt either work-sharing or work-stealing policies for
task scheduling. By dynamically scheduling the parallel tasks, the workloads can be
balanced in multi-core architectures. However, both work-stealing and work-sharing
(refer to Chap. 2) do not consider tasks’ workloads when allocating tasks to differ-

Part of contents in this chapter has been published through ACM Transactions on Architecture
and Code Optimization. Reprinted from Ref. [6], with permission from ACM. Figures 5.1, 5.7,
5.8, 5.9 and 5.10 in this chapter have been published through ACM Transactions on Architecture
and Code Optimization. Reprinted from Ref. [6], with permission from ACM

© Springer Nature Singapore Pte Ltd. 2017
Q. Chen and M. Guo, Task Scheduling for Multi-core and Parallel Architectures,
https://doi.org/10.1007/978-981-10-6238-4_5

113

http://dx.doi.org/10.1007/978-981-10-6238-4_3
http://dx.doi.org/10.1007/978-981-10-6238-4_4
http://dx.doi.org/10.1007/978-981-10-6238-4_1
http://dx.doi.org/10.1007/978-981-10-6238-4_2

www.manaraa.com

114 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

ent cores, which is not a problem for symmetric cores but can cause unbalanced
workloads among asymmetric cores. For example, a long task may be scheduled to a
slow core, while a short task is executed by a fast core. This problem of unbalanced
workloads can significantly degrade the performance of parallel applications.

To this end, in this chapter, we introduce the techniques proposed to improve the
performance of parallel programs (especially, batch-based programs and pipeline-
based programs) on single-ISA AMC architectures where different types of cores in
an AMC have the same Instruction Set Architecture (ISA). All the tasks of a parallel
program can be executed by any core in a single-ISA AMC architecture directly.

This chapter is organized as follows. Section 5.2 describes the problem of unbal-
anced workloads in AMC and the proposed solutions. Section 5.3 discusses related
work. Section 5.6 presents an Asymmetric-Aware Task Scheduling (AATS) method-
ology. Section 5.7 introduces the history-based task allocation in AATS. Section 5.8
presents the preference-based work-stealing in AATS. Section 5.9 gives the imple-
mentation details. Section 5.10 evaluates AATS, provides experimental results, per-
formance evaluation, and limitations of AATS. Section 5.11 summarizes the contri-
butions of AATS.

5.2 Problem Formulation

In this section, we use an example to explain and formulate the problem of the unbal-
anced workloads in AMC with the traditional asymmetric-unaware task scheduling
policies. Suppose a parallel application has four independent parallel tasks: γ1, γ2, γ3

and γ4. Assume that the application runs on an AMC architecture with one fast core
(c0) and three slow cores (c1, c2 and c3) as shown in Fig. 5.1. Suppose γ1, γ2, γ3 and
γ4 take times f1, f2, f3 and f4 on the fast core c0 respectively and f1 > f2 > f3 > f4.
As the counterpart, γ1, γ2, γ3 and γ4 take times s1, s2, s3 and s4 on the slow cores
respectively. We can reasonably deduce that s1 > f1, s2 > f2, s3 > f3 and s4 > f4. For
easing of description and discussion, we further assume f1 > s2, f1 > s3 and f1 > s4.

Figure 5.1 shows two possible allocations of the independent parallel tasks γ1,
γ2, γ3 and γ4 to the asymmetric cores. Figure 5.1a is an optimal allocation where
γ1 is allocated to the fast core c0 and the shorter tasks are allocated to the slow

1 2 3 4

c0 c1 c2 c3

(a) Optimal allocation

12 34

c0 c1 c2 c3

(b) Another possible allocation

Fig. 5.1 Comparison of two possible allocations of the independent tasks γ1, γ2, γ3 and γ4. Allo-
cating long tasks (γ1 and γ2) to slow cores and vice versa may result in the poor performance of a
parallel program

www.manaraa.com

5.2 Problem Formulation 115

Task

Asymmetric
Core

Allocating

Fig. 5.2 The optimal task allocation problem in AMC. Allocate m independent tasks with different
workloads to k c-groups with different computational capacities

cores. The makespan (i.e., the overall completion time) for γ1, γ2, γ3 and γ4 is
Topt = max{f1, s2, s3, s4} = f1. Because f1 < s1, we deduce that Topt < s1.

However, without considering the performance asymmetric feature of AMC and
the character of different tasks, traditional task scheduling policies proposed for
symmetric multi-core architecture such as work-stealing, γ1, γ2, γ3 and γ4 are likely
to be allocated as in Fig. 5.1b. In the allocation, γ3 is allocated to the fast core but the
long task γ1 is scheduled to a slow core. In this case, the makespan for γ1, γ2, γ3 and
γ4 is Ttrad = max{s1, s2, f3, s4} ≥ s1 > f1 = Topt . Obviously, allocating a long task
to a slow core would often degrade the overall performance seriously in traditional
task scheduling policies.

Without loss of generality, Fig. 5.2 illustrates the general problem of optimal task
allocation in AMC. Suppose there are m independent tasks (γ1, ..., γm) with different
workloads and an AMC with k types of cores. We group cores of the same type
into a core group (denoted as c-group). We use G1, ..., Gk to represent the k c-group
in descending order of their computational capacities, and use Ni (1 ≤ i ≤ k) to
represent the number of cores in Gi. The problem can be expressed as how to divide
the m tasks into k groups that are assigned to the k c-groups respectively, so that
the makespan is minimum? Once tasks are assigned to c-groups, many existing task
scheduling policies (e.g., work-sharing and work-stealing) can be adopted to balance
workloads among symmetric cores in the same c-group.

5.3 Existing Solutions

5.3.1 Task Snatching Technique

A straightforward way to improve the random scheduling on AMC is allowing idle
fast cores to snatch tasks from slow cores [1]. For example, with this rescuing policy,
for the situation in Fig. 5.1b, c0 is allowed to snatch γ1 from c3 after finishing γ4.
Figure 5.3 shows the way of scheduling tasks with the task snatching technique.

As shown in Fig. 5.3, suppose c0 snatches γ1 from c3 after finishing γ4 (which
takes time f4). Core c0 still needs (

s1−f4
s1

) × f1 to finish γ1 because c3 has only finished

www.manaraa.com

116 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

Fig. 5.3 Scheduling tasks
with the task snatching
technique

12 34

c0 c1 c2 c3

1

Snatch

The part of 1
executed on c3

s1−f4
s1

of γ1. Let Δs represent the time of the snatching operation. Then the overall

time for c0 to finish both γ4 and γ1 is f4 + s1−f4
s1

× f1 + Δs. Therefore, with the task

snatching technique, the makespan for γ1, γ2, γ3 and γ4 is Tres = max{f4 + s1−f4
s1

×
f1 + Δs, s2, s3, f4}.

Because f4 + s1−f4
s1

× f1 + Δs − f1 >
f1
s1

× f4 + s1−f4
s1

× f1 − f1 + Δs = f4
s1

× f1 +
s1−f4
s1

× f1 − f1 + Δs = Δs, we can deduce that f4 + s1−f4
s1

× f1 + Δs > f1. In addi-

tion, since f1 is larger than s2, s3 and f4, Tres = f4 + s1−f4
s1

× f1 + Δs > f1 = Topt and
the rescuing policy is still not as efficient as the optimal allocation.

Furthermore, since Tres − Tbad = f4 + s1−f4
s1

× f1 + Δs − s1 = (s1 − f4) ×
(
f1
s1

− 1) + Δs and (s1 − f4) × (
f1
s1

− 1) < 0, if the system knows the execution time
of each task on all the cores and Δs is not too large, the snatching policy can improve
the performance of random scheduling. However, the execution time of the tasks on
different cores are unknown to the existing task schedulers. Therefore, idle fast cores
have to snatch tasks randomly and thus the snatching policy will still suffer from the
randomness in the random scheduling. For example, in Fig. 5.1b, with the random
snatching, the worst case could be that c0 first snatches γ2 and γ3 before snatching
γ1, where the makespan is larger.

In summary, the rescuing policy, task snatching, performs worse than the optimal
scheduling that directly allocates each task to the appropriate core. To achieve the
optimal scheduling, the knowledge of tasks’ execution time on different cores is
essential to optimal task scheduling in AMC. This knowledge can help a scheduler
allocate long tasks to fast cores, which is often optimal. It can also help idle fast
cores to steal or snatch the long tasks if steal and snatch are necessary. By comparing
the task snatching policy with the optimal scheduling, we can conclude that an
initial optimal allocation based on the knowledge of workloads is more crucial to
the makespan than the snatching policy that tries to rescue a non-optimal allocation.
To this end, we introduce Asymmetric-Aware Task Scheduling (AATS) that can find
the initial near-optimal task allocation.

www.manaraa.com

5.3 Existing Solutions 117

5.3.2 CAMP

Besides the task snatching technique, many studies have been done to explore optimal
task scheduling in different parallel platforms [5, 23]. Especially, in AMC, many
studies on scheduling focus on resource allocation at the OS level [2, 7, 14, 20].
They aim to achieve high system throughput by balancing the hardware resources
(e.g., cores and caches) among different programs. For instance, Saez et al. [22]
proposed a OS-level thread scheduler, CAMP, to optimize system throughput by
devoting fast cores to run high-speedup applications in AMC.

5.3.2.1 Utility Factor

In CAMP, a new metric Utility Factor (UF), which produces a single value that
approximates how much an application will improve its performance if its threads
are allowed to occupy all the fast cores available on an AMC. The metric is designed
to help the scheduler picks the best threads to run on fast cores in non-trivial cases.
For instance, suppose a workload of a CPU-intensive applicationAwith two runnable
threads and a less CPU-intensive workload B with a single thread are running on an
AMC with one fast core. In this case, it is not immediately clear which thread is the
best candidate for running on the fast core. On the one hand, dedicating the fast core
to a thread of A may bring smaller performance improvements to A than dedicating
the fast core to B, because a smaller part of A will be running on fast cores in the
former case. On the other hand, A is more CPU-intensive, so running it on the fast
core may be more profitable than dedicating the fast core to the less CPU-intensive
application B. By comparing utility factors across threads the scheduler should be
able to identify the most profitable candidates for running on fast cores.

The UF of an application on an AMC architecture is calculated as follows in
CAMP. Given an AMC withNfc fast cores, Eq. 5.1 calculates the utility factorUF of a
parallel application app. In the equation,Nt is the number of threads in the application
app, which is visible to the operating system. SFapp is the average speedup factor of
app’s threads when running on a fast core relative to a slow core

UF = SFapp

(max(1,Nt − (Nfc − 1)))2
(5.1)

In order to understand this equation, we first to consider the case where app has
only a single thread. In this case, UF=SF; in other words the utility factor is equal to
the speedup that app will experience from running on a fast core relative to a slow
core. If app is multithreaded and all its threads were running on fast cores, it would
achieve the speedup of SF. In that case, the denominator is equal to one and UF=SF.
However, if the number of threads is greater than the number of fast cores, then only
some of the threads will run on fast cores and the overall utility factor will be less
than SF. In order to account for that, in the equation, SF is divided by one greater

www.manaraa.com

118 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

than the number of threads that would not be running on fast cores: Nt − (Nfc − 1).
Finally, a quadratic factor is introduced in the denominator, because the experiment
shows that if some of the threads experience the speedup because of running on fast
cores and others do not, the overall application speedup is smaller than the portion of
speedup achieved by threads running on fast cores. That is because threads running
on fast cores must synchronize with the threads running on slow cores, so they do not
fully contribute to the application-wide speedup. Introducing the quadratic factor in
the formula enables to account for that effect rather accurately. Saez et al. [22] has
proved the effectiveness of this equation experimentally.

5.3.2.2 Scheduling Algorithm

After the utility factors of all the applications are calculated, CAMP decides which
threads to place on cores of different types based on their individual utility factors.
In order to achieve this purpose, threads are categorized into three classes: LOW,
MEDIUM, and HIGH according to their utility factors. Threads falling in the HIGH
utility class will be allocated to fast cores.

Specifically, if the number of high-utility threads is larger than the number of
fast cores, the fast cores are shared among these threads equally, using a round-
robin mechanism. Otherwise, if the number of high-utility threads is smaller than the
number of fast cores, there are some idle fast cores remaining and they will be used for
running medium-utility threads or low-utility threads. In contrast to the threads in the
HIGH utility class, fast cores will not be shared equally for threads in the MEDIUM
and LOW utility classes. Sharing the cores equally implies cross-core migrations as
threads are moved between fast and slow cores. These migrations hurt performance,
especially for memory-intensive threads, because threads may lose their last-level
cache state as a result of migrations.

In addition, for a parallel application, its threads that execute a sequential phase
will be designated to a special class SEQUENTIAL_BOOSTED. These threads will
get the highest priority for running on fast cores: this provides more opportunities to
accelerate sequential phases. Only high-utility threads, however, will be assigned to
the SEQUENTIAL_BOOSTED class. Medium- and low-utility threads will belong
to their regular class despite running sequential phases. Because these threads do not
use fast cores efficiently, it is not worthwhile to give them an elevated status. Threads
placed in the SEQUENTIAL_BOOSTED class will remain there for the duration of
amp_boost_ticks, a configurable parameter. After that, they will be downgraded to
their regular class, as determined by the utility factor, to prevent them from monopo-
lizing the fast core. The class-based scheme followed by CAMP relies on two utility
thresholds, lower and upper, which determine the boundaries between the LOW,
MEDIUM and HIGH utility classes. The lower threshold is used to separate the
LOW and MEDIUM classes, the upper threshold is used to separate the MEDIUM
and HIGH classes.

As we discussed above, CAMP is a thread-level scheduler. Because tasks in the
same task-based programs can often achieve similar speedup ratios on fast cores,

www.manaraa.com

5.3 Existing Solutions 119

CAMP is not applicable to improve the performance of a single parallel program.
Therefore, CAMP did not considered the scheduling problem in parallel applications
that this chapter will address in AMC.

5.3.3 Bias Scheduling

Koufaty et al. [12] proposed a bias scheduling which matches threads to the right
type of cores through dynamically monitoring the bias of the threads in order to
maximize the system throughput. In this work, each application is given a bias, which
reflects the core type that best suits its resource needs. By dynamically monitoring
application bias, the operating system is able to match threads to the core type that can
maximize system throughput. Bias scheduling takes advantage of this by influencing
the existing scheduler to select the core type that bests suits the application when
performing load balancing operations.

5.3.3.1 Bias

Koufaty et al. [12] defines application bias as the type of core that the operating
system would prefer to run threads of the application at a particular time. More
specifically:

• A thread has a small core bias if its speedup from running on a big core compared
to a small core would be modest.

• A thread has a big core bias if its speedup from running on a big core compared
to a small core would be large.

The definition of what constitutes a modest or large speedup is dependent on the
characteristics of the cores. In order to select values for these speedups, an operating
system might compare the performance of both cores on a battery of tests and select
a specific range in the curve to map a large speedup (e.g. the upper quartile).

It is worth noting that application bias is not static. While an application might
have a certain bias overall, it can change as the application goes through different
phases of the computation. Different threads from the same application might also
have different bias.

In order to identify the application bias, we first classify core stall cycles broadly
into internal stalls and external stalls. Internal stalls are caused by the lack of
resources internal to the core (an execution unit, a load port), competition on those
resources (a TLB or private cache miss) or natural inaccuracies on them (branch
mis-prediction). Most of these events are short in duration and can often be hidden
by out-of-order microarchitectures. However, they are numerous and include many
sources, leading to pipeline stalls even in the most CPU-bound tests. External stalls
External stalls are caused by access to resources external to the core. They include
shared last level caches, memory and I/O. These events are significantly less frequent

www.manaraa.com

120 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

than internal stalls. However, their latency can be orders of magnitude larger than
internal stalls.

External and internal stalls can be used as a strong predictor of the application
bias. Generally speaking, as proved by Koufaty et al. [12], applications with Cycles-
Per-Instruction (CPI) dominated by either internal or external stalls have a small
core bias. If neither internal nor external stalls dominate the CPI, the application is
dominated by execution cycles. Given the nature of the two core types, the big core
is very likely to outperform the small core significantly, therefore we consider this
type of application to have a big core bias.

In order to compute application bias, performance monitoring hardware available
in modern processors can be used to measure internal and external stalls. Application
bias changes as the amount of stalls fall below or climb above predefined thresholds,
switching an application between small or big core bias.

5.3.3.2 Bias Scheduling Algorithm

Bias scheduling algorithm is built on top of the existing scheduler of operating
system. It does not change the existing scheduler of operating system in ways that
would dictate when to run a thread or change any system properties that the scheduler
is trying to maintain such as fairness, responsiveness or real time constraints. It works
by preferably scheduling applications on the core type that best suits its bias.

In order to implement bias scheduling, the operating system is modified to support
fast-core first scheduling and asymmetry-aware load balancing. The fast-core first
scheduling enables maximum performance by scheduling first to idle big cores. The
asymmetry-aware load balancing schedules work in big cores proportional to an
estimated ratio of big/small performance.

It is worth noting that bias scheduling can be performed on top of any existing
scheduling algorithm. Its design tries to minimize changes to the existing scheduler
by focusing on two areas: imbalanced system and balanced system as described
below.

• On an imbalanced asymmetric system, the scheduler tries to migrate a thread from
the busiest core to the idlest core. Bias scheduling does not change the way in
which these cores are selected. Once they have been identified, the required load
that has the highest bias is migrated to the destination core. If the cores have the
same type, bias is irrelevant. In some instances the scheduler cannot find a thread
with an appropriate bias, and defaults to migrating any thread just as it does without
bias.

• On a balanced asymmetric system, the load balance is periodically checked and
nothing is done if the system is balanced. In such case, the load balancer/scheduler
inspects the load on the run-queue of the critical big cores looking for a thread
that has a small core bias. If such thread is found, it then searches the small cores
looking for a thread that has a big core bias. It then performs a thread swap on

www.manaraa.com

5.3 Existing Solutions 121

their run-queues. This process is started only in big cores, but it works similarly
if started on a small core.

Finally, the bias scheduling does not modify the initial thread allocation. While it
is possible to allow for user annotations or historic tables for initial scheduling, that is
complementary to the bias scheduling. In practice, however, Koufaty et al. [12] have
found that threads show bias fairly quickly, so it might not be necessary to improve
initial allocation. For instance, threads can be allocated to fast/slow cores during the
initial allocation according to their bias.

Furthermore, bias scheduling only hooks into the existing scheduler during load
balancing. It is also limited to influence the core where a thread will be run based on
bias and has no effect whatsoever on when the thread is run, making it transparent
to other parts of the scheduler that select what to run based on priorities, fairness
and other scheduler design considerations. Therefore, implementation on top of any
existing general purpose scheduler design is simplified significantly.

5.3.4 Age-Based Scheduling

Lakshminarayana et al. [13] proposed age-based scheduling to improve the perfor-
mance of multi-threaded applications on AMC architecture. Age-based scheduling
targets multi-threaded applications that follow a simple fork-join model as shown in
Fig. 5.4, in which each dotted line is a thread.

In the model, the main thread of the application forks several threads that perform
the actual computation. These threads may encounter multiple barriers during their
whole lifetime. After all the threads complete their work, they join to the main thread.
The goal of the age-based scheduling is to schedule the threads such that they all
reach their next mile-stones, which could be either a barrier or termination, at the
same time. In this case, the performance of the application could be optimal. It
tries to do this by utilizing all the available cores, while exploiting the fast cores to
accelerate threads that are lagging behind. Because of the asymmetric nature of the
cores, threads that execute on slow cores automatically lag behind threads executing
on fast cores. Many well-designed applications, such as Blackscholes and Swaptions
in Parsec benchmark suite, fall in this category naturally.

Barrier Barrier BarrierMain
thread

Fork Join

Fig. 5.4 Application model assumed by the age-based scheduling

www.manaraa.com

122 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

5.3.4.1 LJFCF Scheduling Policy

Based on the age of the threads, Lakshminarayana et al. [13] proposed the Age Based
Longest Job Fast Core First (LJFCF) policy. The policy predicts how long a thread is
from the next barrier (termination if there is no more barrier). Based on the distance,
the threads that have the longest predicted distance to the next milestone is assigned
to the fast cores. The challenging problem here is to exactly predict the remaining
time of a thread to the next milestone.

Fortunately, LJFCF policy does not need to know the absolute values of distances
of different threads, but only need to know the relative values of distances of threads.
In LJFCF policy, the prediction of relative values of distances to the next milestone
is based on the insight that threads that are created together usually have the same
lengths. Thus, threads that are created together are predicted to have the same dis-
tances to their next milestones at the time of their creation and threads that are created
later are predicted to have longer distances to their next milestones. When a thread
reaches a milestone, its distance to the next milestone is predicted and the newly
predicted distance is used for thread to core assignment.

LJFCF is applied whenever one of the following occurs: (1) a thread is created,
(2) a core goes idle because all the threads assigned to the core have either terminated
or blocked, or (3) periodic timer for reassignment expires. If the above cases occur,
it means that the whole system enters a new state, thread reassignment is necessary
to achieve the best performance of an multi-threaded application.

Meanwhile, in order to apply LJFCF policy in the operating system, the periodic
load balancing in traditional operating system should be replaced with periodic reas-
signment. While load balancing is typically done for each core at different points in
time, reassignment is done at the same time for all cores.

5.3.4.2 Age Prediction

Lakshminarayana et al. [13] have propose two practical ways: prediction, and pro-
filing, to calculate the remaining execution time, denoted by rem_exe, of a thread.

If LJFCF policy uses prediction to determine the distance of each thread from its
next milestone, it predicts that the distance between any two successive milestones
(creation, barriers and termination) of any thread is the same and the common distance
value is predicted to be very large. This implies that after crossing a milestone all
threads are predicted to have the same distance to their next milestone. As a thread
executes, the predicted remaining distance to the next milestone reduces according
to its progress. When it is invoked, the predicted remaining distance to the next
milestone is used as rem_exe to assign threads to cores.

If the method of profiling is adopted by LJFCF policy, the distance between any
two successive milestones are not the same across different threads. By profiling the
application with sample inputs, the average distance between milestones is deter-
mined for each thread. These average distances are fed to the scheduler as a set of

www.manaraa.com

5.3 Existing Solutions 123

ratios before the application is run. Based on these ratios, the c. Threads with lower
ratios are predicted to have shorter distances between milestones.

Based on the above techniques, Algorithm 7 shows the detailed algorithm of the
LJFCF policy.

Algorithm 7 The LJFCF Policy in Age-based Scheduling
Require: : The rem_exe of all the threads;
Require: : Nt (number of threads), Nc (number of cores) ;
1: sort the threads in the decreasing order of their rem_exe ;
2: if Nt ≤ Nc then
3: Allocate each thread to a core while threads with larger rem_exe are allocated to fast cores ;
4: end if
5: if Nt > Nc then
6: avg_rem_exe_corei = (

∑Nt−1
b=0 rem_exeb/

∑Nc−1
b=0 core_perfb) × core_perfi ; //Compute the aver-

age rem_exe that must be assigned to each core i ;
7:
8: for all thread threadj in sorted order do
9: rem_rem_exei = avg_rem_exe_corei - rem_exe_corei ;
10: k = max(rem_rem_exei) ; //identify the core corek for which the difference between the

rem_exe to be assigned and the rem_exe actually assigned is the highest ;
11: assign threadj to corek ;
12: if number of threads yet to be assigned is less than or equal to the number of cores without

any assignments then
13: make 1:1 assignment of threads to cores ;
14: break ;
15: end if
16: end for
17: end if

In the algorithm, rem_exeb is the remaining distance of thread threadb to the next
milestone; core_perfb is the normalized performance of core coreb; avg_rem_exe_
corei is the average rem_exe that should be assigned to core corei for the best per-
formance; rem_exe_corei is the remaining distance of all the threads allocated to
corei. Observed from the algorithm, we can find that the age-based scheduling pol-
icy tries to balance the remaining distance of all the active threads to the cores so that
they can complete at the same time. In this way, the performance of multi-threaded
applications can be improved.

5.3.5 Speed-Based Balancing

Hofmeyr et al. [10] proposed a speed balancing algorithm to manage the migration
of threads so that each thread has a fair chance to run on the fastest core available.
Instead of balancing the workloads, the algorithm balances the time of a thread
executing on faster and slower cores.

www.manaraa.com

124 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

5.3.5.1 Emerging Load Balancer in Linux

In emerging Linux, the Load on each core is defined as the number of tasks in the per-
core run-queue. Linux attempts to balance the load (queue lengths) system wide by
periodically invoking the load balancing algorithm on every core to pull tasks from
longer to shorter queues, if possible. Linux is topology-aware by scheduling tasks in
term of scheduling domains. The scheduling domains form a hierarchy that reflects
the way hardware resources are shared: SMT hardware context, cache, socket and
NUMA domain. Balancing is done progressing up the hierarchy and at each level,
the load balancer determines how many tasks need to be moved between two groups
to balance the sum of the loads in those groups. If the balance cannot be improved
(e.g. one group has 3 tasks and the other 2 tasks) Linux will not migrate any tasks.

Emerging load balancer may fail to balance run-queues due to the constraints on
migrating tasks. In particular, the balancer will never migrate the currently running
task, and it will resist migrating “cache hot” tasks, where a task is designated as cache-
hot if it has executed recently (around 5ms) on the core (except for migration between
hardware contexts on SMT). This is a simple locality heuristic that ignores actual
memory usage. If repeated attempts (typically between one and two) to balance tasks
across domains fail, the load balancer will migrate cache-hot tasks. If even migrating
cache-hot tasks fails to balance groups, the balancer will wake up the kernel-level
migration thread, which walks the domains from the base of the busiest core up to
the highest level, searching for an idle core to push tasks to.

5.3.5.2 Advantages of Speed-Based Balancing

Suppose all the threads of a parallel application have the same workload and they
have to synchronize their execution. In this case, the performance of the application
is that of the slowest thread and variation in “execution speed” of any thread neg-
atively affects the overall system utilization and performance. A particular thread
will run slower than others due to running on the core with the longest queue length,
sharing a core with other threads with higher priority or running on a core with lower
computational power (slower speed).

Let us use an example to explain the benefit of speed balancing. Consider a parallel
application with N threads running on M homogeneous cores, N > M. Assume that
threads will execute for the same amount of time S seconds and balancing executes
every B seconds. Intuitively, S captures the duration between two program barrier or
synchronization points. With Linux load balancing, the total program running time
under these assumptions is at most (T + 1) × S, the execution time on the slow cores.

With fair per-core schedulers, the average thread speed is f × 1
T + (1 − f) × 1

T+1 ,
where f represents the fraction of time the thread has spent on a fast core. In default
Linux, since the queue-length based load balancing will not migrate threads so the
overall application speed is that of the slowest thread 1

T+1 . Ideally, each thread should
spend an equal fraction of time on the fast cores and on the slow cores. In this case,

www.manaraa.com

5.3 Existing Solutions 125

the asymptotic average thread speed becomes 1
2×T + 1

2×(T+1)
which amounts to a

possible speedup of 1
2×T .

According to the above analysis, it is much faster than the default queue-length
based scheduler in Linux. By letting all the threads to run for the same time on the
fast core, the performance of the multi-threaded applications can be improved.

5.3.5.3 Algorithm of Speed-Based Balancing

In order to actually implement speed balancing, Hofmeyr et al. [10] define speed =
texec
treal

, in which texec is the elapsed execution time and treal is the wall clock time. This
measure directly captures the share of CPU time received by a thread and can be
easily adapted to capture behavior in asymmetric systems. It is simpler than using the
inverse of queue length as a speed indicator because that requires weighting threads
by priorities, which can have different effects on running time depending on the task
mix and the associated scheduling classes. Using the execution time based definition
of speed is a better measure than the length of run queue.

During the implementation, Hofmeyr et al. [10] uses a helper thread (balancer)
running on each core (named the local core). Each balancer operates independently
without any global synchronization. Periodically, a balancer will wake up, check for
imbalances, correct them by pulling threads for a slower core to the local core (if
possible) and then goes to sleep again. The period over which the balancer sleeps
(balance interval) determines the frequency of migrations. In more detail, each bal-
ancer performs the following steps.

1. For every thread ti, on local core cj, it computes the speed sij over the elapsed
balance interval.

2. It computes the local core speed sj over the balance interval as the average of
the speeds of all the threads on the local core: sj = average(sij).

3. It computes the global core speed sglobal as the average speed over all cores:
sglobal = average(sj).

4. It attempts to balance if the local core speed is greater than the global core speed:
sj > sglobal.

The only interaction between the balancers is the mutual exclusion on the variable
sglobal. The balancer attempts to balance the time of each thread on fast core by
searching for a suitable remote core ck to pull threads from. A remote core ck is
suitable if its speed is less than the global speed (sk < sglobal) and it has not recently
been involved in a migration. This heuristic has the side effect that it allows cache
hot threads to run repeatedly on the same core. Once it finds a suitable core ck , the
balancer pulls a thread from the remote core ck to the local core cj. The balancer
chooses to pull the thread that has migrated the least in order to avoid creating tasks
that migrate repeatedly.

Lacking of global synchronization between balancer, the current implementation
of speed-based balancing is not able to guarantee that each migration will be optimal.
In another word, each balancer makes its own decision independently, which may

www.manaraa.com

126 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

result in a migration from the slowest core to a core that is faster than average, but
not actually the fastest core.

5.3.6 Scheduling on AMC with Hardware Support

Besides the above discussed pure software techniques, some other researchers pro-
posed techniques to improve the performance of parallel applications on AMC with
extra hardware support. These techniques cannot be directly used in emerging real
system computers. For instance, Suleman et al. [24], proposed ACS (Accelerated
Critical Sections) to accelerate the execution of critical sections by migrating the
threads with critical sections to fast cores. Similar to ACS, Joao et al. [11] pro-
posed a cooperative software-hardware mechanism, BIS (Bottleneck Identification
and Scheduling) that identify and accelerate the most critical bottlenecks. BIS iden-
tifies the most critical bottlenecks by measuring the number of cycles threads have to
wait for each bottleneck and accelerates the bottlenecks using fast cores on an AMC
architecture. In addition, while BIS needed to add some structures in hardware, in
this chapter, we introduce a pure software approach.

As observed from the schedulers discussed above (CAMP, bias scheduling, age-
based scheduling, and speed-based balancing), they improve the performance of
applications by scheduling threads. In their assumption, the work of a thread is fixed
once it is created, which is not true in emerging task-based applications scheduled
with work-sharing or work-stealing. They are not applicable for emerging applica-
tions, where different tasks have different workloads.

5.4 Theoretical Ideal Task Scheduling

Without loss of generality, we generalize the task allocation problem, assuming the
execution time of tasks on all the cores are known. In other words, we assume that
a Duration Table (DT) for the parallel program that has m tasks on the AMC that
has k c-groups has already known in Table 5.1. In the table, the item tji in row γj and
column Gi is the expected execution time of γj on a core in c-group Gi.

Based on the duration table in Table 5.1, the following theorem provides theoret-
ical guidance to optimal task allocation.

Theorem 5.1 For tasks γ1, ..., γm, if γpi−1+1, ..., γpi (1 ≤ i ≤ k, p0 = 0, pk = m) are
allocated to c-group Gi, their makespan is minimum only when p1, ..., pk−1 satisfy

p1∑

n=1

tn1 : ... :
pi∑

n=pi−1+1

tni : ... :
m∑

n=pk−1+1

tnk = N1 : ... : Ni : ... : Nk (5.2)

www.manaraa.com

5.4 Theoretical Ideal Task Scheduling 127

Table 5.1 Duration Table (DT) of the program that has m tasks on an AMC architecture with k
c-groups

Tasks C-groups

G1 G2 ... Gi ... Gk

γ1 t11 t12 ... t1i ... t1k
γ2 t21 t22 ... t2i ... t2k
...

γj tj1 tj2 ... tji ... tjk
...

γm tm1 tm2 ... tmi ... tmk

Moreover, the task allocation is optimal and the optimal makespan Topt =
∑p1

n=1 tn1

N1
=

... =
∑pi

n=pi−1+1 tni
Ni

... =
∑m

n=pk−1+1 tnk

Nk
.

Proof Straightforward. If tasks are divided into groups in Eq. 5.2, the workloads are
balanced among the k c-groups in terms of the computation capacities of the cores in
different c-groups. Since all the workloads are fully balanced during the time period
Topt and the lower bound is achieved, this task allocation is optimal. Therefore, the
execution time for the group of tasks allocated on the k c-groups can be calculated

as
∑p1

n=1 tn1

N1
= ... =

∑pi
n=pi−1+1 tni

Ni
... =

∑m
n=pk−1+1 tnk

Nk
= Topt .

However, it is not feasible to find the ideal solution to Theorem 5.1 because they
may not exist in real situations. Even if they exist, the problem is defined as the
minimum makespan problem on uniform parallel machines [15] which is NP-hard.
It is not practical to design a task scheduling system that can achieve the optimal
scheduling due to the high complexity of searching for the solution.

5.5 A Practical Polynomial Time Solution

In order to find a good task allocation within a reasonable polynomial time, we
relax the conditions of Theorem 5.1 and propose a heuristically solution for the task
allocation problem in AMC, as shown in Fig. 5.5.

While Fig. 5.5 shows the way of allocating tasks in AMC from high level, Table 5.2
shows how the m independent tasks are divided into k groups that are allocated to k
c-groups in polynomial time. In this solution, the m independent tasks are sorted in
descending order of their execution time on the fastest core (any core in G1). If the
fastest core needs longer time to execute a task a than another task b, the workload
of a is heavier than the workload of b. Based on the sorted tasks, we choose p1, ...,
pk−1 to divide the m tasks into k groups that are allocated to the k c-groups (i.e., G1,
..., Gk) according to Algorithm 6.

www.manaraa.com

128 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

Fig. 5.5 Allocate m tasks with different workloads to k c-groups

Table 5.2 Allocate m tasks with different workloads to k c-groups

We assume there are enough tasks to be allocated to the c-groups and each c-group
will be allocated at least 1 task (i.e., pi < pk if i < k). Observed from Table 5.2, once
p1, ..., pk−1 are determined, the m tasks are divided into k groups. Because the values
of p1, ..., pk−1 could be 1, 2, ..., m-1, the number of possible choices of dividing the
m tasks equals to the number of possible choices of selecting k − 1 numbers from
1, 2, ..., m-1. The above problem is a combination problem and the overall number
of choices is Ck−1

m−1. Therefore, in Algorithm 8, we compare the estimated makespan
of the tasks for each of all the Ck−1

m−1 combinations of p1, ..., pk−1 and choose the
combination of p1, ..., pk−1 that result in the minimum makespan.

Ck−1
m−1 could be very large if both m and k are large. In the worst case, Algorithm

6 is of an exponential time complexity. Fortunately, AMC architectures only have
two types of cores in most cases (i.e., k = 2) [11, 22, 25]. If k = 2, Ck−1

m−1 = C1
m−1 =

m − 1, which increases with the number of tasks linearly. In addition, by grouping
tasks into task classes, AATS can further greatly reduce m and thus can further
significantly reduce Ck−1

m−1 (the details will be explained in Sect. 5.7). Because both
m and k are small in AATS, the overhead of Algorithm 8 is negligible for real world
applications and real AMC architectures.

www.manaraa.com

5.5 A Practical Polynomial Time Solution 129

Algorithm 8 Static near-optimal polynomial time task allocation.
Require: A set of tasks {γ1, ..., γm};
Require: The ETT of tasks on k c-groups: t[m][k]
Require: The numbers of cores in c-groups G1, ..., Gk : N1, ..., Nk
Ensure: p[k-1]: {p1, ..., pk−1}
1: AllocateTask()
2: {
3: int p[k-1], q[k-1]; //q[k-1] stores the to-be-evaluated combination of p1, ..., pk−1
4: int i=0, min_span = MAXMUM_INT ;
5: while (Not all the settings are evaluated)
6: {
7: Get a new setting from Ck−1

m−1 possible settings and update q[k-1] ;

8: if (any of {
∑q[0]

n=0 t[n][0]
N1

, ...,
∑m−1

n=q[k−2]+1 t[n][k−1]
Nk

} > min_span)
9: continue ;
10: else

11: min_span = max {
∑q[0]

n=0 t[n][0]
N1

, ...,
∑m−1

n=q[k−2]+1 t[n][k−1]
Nk

} ;
12: Copy q[k-1] to p[k-1] ;
13: }
14: return p[k-1] ;
15: }

In the above heuristically near-optimal solution, we assume the execution time
table of the program has been constructed and all the items in the table are known.
However, in real parallel applications, this assumption is not valid because these
information is not known until they complete. How to apply the above theoretical
solution to parallel programming environments is a challenging issue.

5.6 Design of Asymmetric-Aware Task Scheduling

In order to find a practical way to apply the above polynomial time solution in real-
system scenario, in this section, we present an Asymmetric-Aware Task Scheduler
(AATS) that leverages a static history-based task allocation policy and a dynamic
preference-based work-stealing policy.

Figure 5.6 shows the processing flow of an application with AATS on an AMC
architecture.

As shown in Fig. 5.6, using the history-based task allocation policy, AATS initially
allocates tasks to the right c-groups statically. Basically we use history to predict the
execution time of future tasks on cores in different c-groups. Tasks are classified into
task classes according to their function names. Instead of allocating tasks directly,
we allocate the task classes to different c-groups. For the same function f , we can
collect the average execution time of the f -named tasks on cores in every c-group
respectively in the history. Because the average execution time of each task class
in every c-group is known from history, we can adopt Algorithm 8 to allocate the

www.manaraa.com

130 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

Preference-based stealing

App

Task Classes

C-groups
Task pools

History-based allocation

Cores

Fig. 5.6 The processing flow of an application with AATS on an AMC architecture

functions to different c-groups. Based on this allocation, tasks will be allocated to
the c-group where its function name is allocated. If history workloads of tasks can
reasonable reflect future workloads of tasks that execute the same function, this task
allocation scheme will work well.

It is possible that in seldom cases where history cannot precisely predict the
future, the allocation suggested by the above history-based task allocation is only
an approximation of the optimal allocation. In order to further balance the work-
load, AATS adopts the preference-based work-stealing policy to further adjust the
workloads dynamically among different c-groups.

The philosophy behind AATS is based on our theoretical analysis in Sect. 5.4:
an optimal task allocation is more crucial to the makespan of parallel tasks than
the rescuing policies like task snatching or stealing; and a workload-aware task
snatching/stealing is better than random snatching/stealing. The history-based task
allocation policy and the preference-based work-stealing policy are used to fulfill the
philosophy.

5.6.1 Processing Flow of AATS

Without loss of generality, we assume the asymmetric cores in AMC can be divided
into k c-groups G1, ..., Gk , where Gi has Ni cores, and the cores in Gi are faster than
the cores in Gj if i < j.

As presented before, instead of allocating the dynamically spawned tasks, AATS
allocates the task classes to different c-groups. In order to support the strategy, AATS
creates one task pool for each task class to store its tasks. When a taskγ with a function
name f is generated, its task pool is checked first. If the task pool for f -named tasks
exists, γ is pushed into the correspondence task pool. If there is no task pool for
f -named tasks, then a new task pool is created and γ is pushed into the new task
pool.

Generally, we use a data structure TC(f , ipc, n1, ..., nk, t1, ..., tk) to represent a
task class, where f is the function name, ipc is the IPC (Instruction-Per-Cycle) of a
task in the task class on a core in the fastest c-group G1, ni (1 ≤ i ≤ k) is the number

www.manaraa.com

5.6 Design of Asymmetric-Aware Task Scheduling 131

of tasks executed by cores in c-group Gi in history and ti (1 ≤ i ≤ k) is the estimated
execution time of a task in the task class on a core in c-groupGi. Note that, in any task
class TC(f , ipc, n1, ..., nk, t1, ..., tk), for any 1 ≤ i ≤ k, ni and ti cannot be obtained
directly because the tasks are spawned dynamically and their real execution time on
different cores cannot be obtained until they are completed.

In order to allocate task classes to c-groups appropriately, the key issue is to obtain
ipc, ni (1 ≤ i ≤ k) and ti (1 ≤ i ≤ k) of all the task classes precisely. Targeting this
issue, AATS collects ipc, ni (1 ≤ i ≤ k) and ti (1 ≤ i ≤ k) of all the task classes
based on historical statistics. Once the information of all task classes are determined,
AATS uses history-based task allocation policy to allocate the task classes to different
c-groups near-optimally using Algorithm 8.

After the task classes are allocated, AATS leverages the preference-based work-
stealing policy to balance tasks among cores in the same c-group and among different
c-groups dynamically. In the preference-based work-stealing policy, once cores in
one c-group finish all the tasks allocated to the c-group, the cores help other c-groups
to execute their tasks. To achieve this purpose, each core is given a preference list
of task clusters (to be defined shortly). An idle core obtains a task according to the
order of its preference list.

In the following two sections, we explain the details of the history-based task
allocation policy and the preference-based work-stealing policy, respectively.

5.7 History-Based Task Allocation

During the execution of a parallel program, AATS assumes that tasks executing the
same function in the current run have similar workloads. As for the assumption,
although a function may show divergent behaviors depending on the inputs, the
inputs of the tasks in the same task class in one run are often similar due to data
parallelism. Empirically, in order to parallelize a serial program, the whole data set
of the serial program is often been divided into many equal-size data blocks and each
task will work on a single data block. Therefore, most well-designed data parallel
programs obey this assumption. For example, in pipeline programs (e.g., Dedup and
Ferret in Parsec [3]), tasks in different stages run in parallel. Tasks in the same stage
execute the same function and they have similar workloads, but tasks in different
stages execute different functions and they have different workloads. For programs
that do not obey this assumption (such as divide-and-conquer programs), traditional
work-stealing policy will be used to schedule the programs. Based on the above
assumption, AATS uses the historical statistics collected during the execution of a
program to estimate the workloads of future tasks in the same run. AATS collects
the execution time and IPC of all the completed tasks using hardware performance
counters.

Remember that AATS allocates task classes instead of tasks to the c-groups.
Therefore, the first step in the history-based task allocation is building the task classes

www.manaraa.com

132 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

for the target parallel program. AATS builds task classes for non-batch programs and
batch programs in different ways.

5.7.1 Build Task Classes

5.7.1.1 Non-batch Programs

In parallel programs whose tasks are not processed in batches, such as pipeline
programs, the parallel tasks are generated dynamically at runtime. Because the tasks
are spawned continually, it is not practical to group the un-processed tasks and
determine the appropriate allocation directly. In this scenario, the task classes are
created totally based on the collected historical information.

Therefore, for non-batch programs, AATS further assumes that the percentage
of tasks executing the same function among all tasks is almost the same during the
execution of a parallel application. As for this assumption, in many signal processing
programs, different signals are input into the programs at a constant rate, where
tasks processing different signals are created at a constant rate. As another example,
most pipeline programs also obey this assumption. In pipeline programs, the data
are divided into many data chunks and the data processing are divided into several
stages. Because a task is launched for a data chunk at every stage and every data
chunk needs go through all the stages, the assumption is approved.

Under this assumption, the near-optimal task allocation for the completed tasks are
also near optimal for the future tasks. Therefore, in this case, the history-based core
allocator searches the near-optimal task allocation for the completed tasks instead
and then allocates the newly spawned tasks in the same allocation strategy. To find
the appropriate allocation for the completed tasks, the tasks completed in history are
also organized as task classes according to their function names.

We still use TC(f , ipc, n1, ..., nk, t1, ..., tk), to represent a task class that is com-
prised of the completed tasks. In AATS, the task classes of completed tasks are
updated in a timely manner. Once a task γ is completed, AATS collects its exe-
cution time and its IPC. Suppose the execution time and IPC of γ are tγ and ipcγ

respectively. If task γ is executed by a core in the c-group G1, then its task class
TC(f , ipc, n1, ..., nk, t1, ..., tk) is updated to Eq. 5.3.

TC(f ,
ipc × n1 + ipcγ

n1 + 1
, n1 + 1, ..., nk,

t1 × n1 + tγ
n1 + 1

, ..., tk) (5.3)

Otherwise, if γ is executed by a core in Gi (i > 1), ni in its task class is updated

to ni + 1, and ti in its task class is updated to
ti×ni+t1× ipc

ipcγ

ni+1 as described in Eq. 5.4. If
there is no such a class, a new task class TC(f , ipc, n1, ..., nk, t1, ..., tk) is created for
f . In the newly created task class, ni = 1, ti = tγ and all the other items are 0.

www.manaraa.com

5.7 History-Based Task Allocation 133

TC(f ,
ipc × n1 + ipcγ

n1 + 1
, n1, ..., ni + 1, ..., nk, t1, ...,

ti × ni + t1 × ipc
ipcγ

ni + 1
, ..., tk)

(5.4)
Note that, for task γ that is executed by a core in c-group Gi, AATS does not use

its real execution time tγ to update ti in its task class TC(f , ipc, n, t1, ..., ti, ..., tk)
but using its IPC ipcγ to update ti. This is because the execution time of a task on a
core may increase due to events that the runtime system cannot control. This could
be the case of the execution of an interrupt handler on the core where the task was
scheduled, page-fault processing, or any bottom-half processing the OS does (load
balancing or I/O related operations). Fortunately, we can use t1 × ipc

ipcγ
to calculate

the execution time of γ when it is not interrupted by any other events. Using the
expected execution time of γ , the information in the task classes is accurate enough
for construct DT of the correspondence program.

5.7.1.2 Batch Programs

Different from the non-batch programs, in batch programs, the parallel tasks are
launched and processed in batches. Only when all the tasks in a batch are completed,
the program launches another batch of tasks. For batch programs, the additional
assumption for non-batch programs can be removed because AATS can obtain the
real numbers of tasks in every task class.

If a batch program enters a new batch, in AATS, the workers do not execute the
tasks immediately but letting the program generate all the tasks in the batch first.
Because the tasks are divided into task classes and are distributed to different task
pools when they are generated, once all the tasks in the batch are spawned, AATS
gets many task classes of un-executed tasks and the correspondence task pools.

AATS uses a simplified data structure TC(f , ipc, n, t1, ..., tk) to represent a task
class in a batch program, in which n is the number of f -named tasks in the current
batch and ti (1 ≤ i ≤ k) is the estimated execution time of the tasks in the task class
on a core in c-group Gi. In TC(f , ipc, n, t1, ..., tk), n can be collected by counting the
number of tasks in the correspondence task pool. Based on the historical statistics,
we calculate tj (1 ≤ j ≤ k) in TC(f , ipc, n, t1, ..., tk). Let r represent the number of
f -named tasks completed by cores in c-group Gi in history and let ipcj1, ..., ipcjr
represent their IPCs. We can calculate tj in TC(f , ipc, n, t1, ..., tj, ..., tk) in Eq. 5.5.

tj = t1 × ipc
∑r

m=1 ipcjm/r
(5.5)

Based on the information about the task classes, the next step is to allocate the
task classes of the completed tasks to the k c-groups as described in Sect. 5.7.2.

www.manaraa.com

134 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

5.7.2 Allocate Task Classes to C-Groups

Without loss of generality, we suppose there are overallm task classes in a parallel pro-
gram. If the parallel program is not a batch program, them task classes are denoted by
TC1(f1, ipc1, n11..., n1k, t11, ..., t1k), ..., TCm(fm, ipcm, nm1..., nmk, tm1, ..., tmk). Oth-
erwise, if the parallel program is a batch program, the m task classes are denoted by
TC1(f1, ipc1, n1, t11, ..., t1k), ..., TCm(fm, ipcm, nm, tm1, ..., tmk). Note that, the m task
classes TC1, ..., TCm are sorted in the descending order of ti1 (1 ≤ i ≤ m).

If the task classes are ready, we apply Algorithm 8 to divide the task classes into k
groups and allocate them to the k c-groups accordingly. In order to apply Algorithm 8,
we need to build the duration table for the m task classes first. Tables 5.3 and 5.4 give
the duration table for a non-batch program and a batch program respectively.

Similar to Table 5.1, in Tables 5.3 and 5.4, the very item at row TCi and column
Ga represent the time needed by a core in c-group Ga to execute all the tasks in task
class TCi. For non-batch program, because there are

∑k
j=1 nij tasks in task class TCi

are completed in history and the expected execution time of a task in TCi on a core in
c-groupGa is tia, the very item at row TCi and columnGa of Table 5.3 is

∑k
j=1 nij · tia.

For batch program, because there are overall ni tasks in task class TCi are generated
in the current batch and the expected execution time of a task in TCi on a core in
c-group Ga is tia, the very item in row TCi and column Ga of Table 5.4 is ni · tia.

Based on Tables 5.3 and 5.4, we apply Algorithm 8 to divide the task classes into
k groups and allocate them to the k c-groups accordingly. We call the k groups of task
classes task clusters. Since task clusters and c-groups are a one-to-one mapping, for
the sake of convenience, we use Gi to represent both a task cluster and a c-group in
the following discussion. Figure 5.7 illustrates how the history-based task allocation
policy works. In the figure, task pool Pj (1 ≤ j ≤ m) stores tasks in task class TCj.

As mentioned before, in both Tables 5.3 and 5.4, the m task classes are sorted
in the descending order of ti1 (1 ≤ i ≤ m) instead of

∑k
j=1 nij · ti1 (1 ≤ i ≤ m) or

ni · ti1 (1 ≤ i ≤ m). In this way, if we unfold the task classes into tasks, the tasks in
the new duration table are sorted in the descending order of their execution time on

Table 5.3 Duration table of a non-batch program with m task classes on an AMC with k c-groups

Task classes C-groups

G1 ... Ga ... Gk

TC1
∑k

j=1 n1j · t11 ...
∑k

j=1 n1j · t1a ...
∑k

j=1 n1j · t1k
TC2

∑k
j=1 n2j · t21 ...

∑k
j=1 n2j · t2a ...

∑k
j=1 n2j · t2k

...

TCi
∑k

j=1 nij · ti1 ...
∑k

j=1 nij · tia ...
∑k

j=1 nij · tik
...

TCm
∑k

j=1 nmj · tm1 ...
∑k

j=1 nmj · tma ...
∑k

j=1 nmj · tmk

www.manaraa.com

5.7 History-Based Task Allocation 135

Table 5.4 Duration table of a batch program with m task classes on an AMC with k c-groups

Task classes C-groups

G1 ... Ga ... Gk

TC1 n1 · t11 ... n1 · t1a ... n1 · t1k
TC2 n2 · t21 ... n2 · t2a ... n2 · t2k
...

TCi ni · ti1 ... ni · tia ... ni · tik
...

TCm nm · tm1 ... nm · tma ... nm · tmk

Task

Task

Task

Task

Task

Task

...
...

...
......

... ...
......

G1 Gi Gk

Task

Task

Task

Task

Task

Task

...

Fig. 5.7 Allocating m task classes to k c-groups in the history-based task allocation

the fastest core as in Table 5.1, which is the basis of Algorithm 8. However, if we
unfold the task classes in Tables 5.3 and 5.4 into tasks, the new duration tables will
have M = ∑m

a=1

∑k
b=1nab rows and M = ∑m

a=1 na rows respectively. In this case,
Algorithm 8 has to check Ck−1

M−1 possible combinations of p1, ..., pk−1 to search for
the optimal allocation of tasks to c-groups.

On the other hand, if the tasks are grouped into task classes as in Tables 5.3
and 5.4, Algorithm 8 only needs to check Ck−1

m−1 possible combinations. Because a
parallel program often has a great amount of tasks but only have a small number
of task classes, m � M and Ck−1

m−1 � Ck−1
M−1. Essentially, by grouping tasks into task

classes, we make sure that the tasks executing the same function are allocated to the
same c-group. In this way, we can greatly reduce the tries needed to search for the
appropriate allocation of tasks to c-groups. For instance, suppose 200 tasks that can
be classified into 10 task classes are completed. If the program runs on an AMC
with four types of cores (normally, there are only two types of cores in an AMC),
the number of combinations of p1, ..., pk−1 is reduced from C3

199 = 1, 293, 699 to
C3

9 = 84 by grouping tasks into task classes. Therefore, the overhead of Algorithm 8
in AATS is small.

www.manaraa.com

136 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

It is worth noting that all the information required by thehistory-based task alloca-
tion is collected automatically. The number of cores in every c-group can be acquired
from the operating system. The execution time and IPC of a task are acquired at run-
time. Once a task is completed, the information about its task class is updated as
presented in Sect. 5.7.1.

In addition, the execution time of a memory-intensive task can vary from run to
run due to the contention on shared resources. The contention may result in slightly
unbalanced workload in AATS. For a newly-generated task, since we use the IPCs
of all the tasks completed in history in its task class to estimate its execution time,
the calculated execution time is close to its real execution time. Even the contention
on shared resources incurs slightly load unbalancing, AATS can use the preference-
based work-stealing policy to further balance the workload dynamically by schedul-
ing the tasks at runtime.

5.8 Preference-Based Work-Stealing

AATS uses a preference-based work-stealing policy to balance workloads dynam-
ically. In our situation, task scheduling is complex since there are overall m task
pools, labeled as P1, ..., Pm, corresponding to the m task classes TC1, ..., TCm. AATS
first tries to balance the workloads within the same c-group before scheduling tasks
across c-groups. We use a core c from the c-group Gi in Fig. 5.7 as an example to
explain the details of the preference-based work-stealing policy.

5.8.1 Scheduling Within a C-Group

If core c from c-group Gi is free, it first tries to obtain tasks from the task pools that
store tasks allocated to its c-group Gi (i.e., Pa(i−1)+1, ..., Pai as shown in Fig. 5.7).
Since multiple task pools are allocated to Gi, c needs to decide to obtain a task from
which task pool first.

A basic strategy for choosing victim task pool to obtain task is choosing task pools
in the order of Pa(i−1)+1, ..., Pai that is the order of task classes in Fig. 5.7. Only when
the task pool Pj (a(i−1) + 1 ≤ j < ai) is empty, c tries to obtain a task from the next
task pool Pj+1 until it gets a task.

This basic strategy is similar to work-sharing strategy in which all the cores share
a single task pool. In the basic strategy, cores in Gi try to execute all the tasks in
one task pool before moving to the next task pool allocated to Gi. Therefore, the
basic strategy often causes serious lock contention on the task pools similar to work-
sharing since many cores in Gi may try to lock the same task pool for obtaining new
tasks. The serious lock contention may degrade the performance of AATS.

To relieve the lock contention, we decide to use a strategy borrowed from ran-
dom work-stealing that has been proved to be effective. In traditional random work-

www.manaraa.com

5.8 Preference-Based Work-Stealing 137

stealing, each core has a task pool. When a core is free, a core randomly chooses a
victim core and tries to steal a task from the victim core’s task pool. In our scenario,
there are multiple task pools as well but they are associated with task classes not
cores. In AATS, if c is free, it randomly chooses a task pool Pj from Pa(i−1)+1, ..., Pai
and tries to obtain a task from Pj. If Pj is empty, it randomly chooses another task
pool and tries to obtain a task from the new chosen task pool until c gets a task. In
this case, since there are multiple task pools for obtaining tasks, the lock contention
is much lower and the performance would be better.

5.8.2 Scheduling Among C-Groups

If all the task pools allocated to Gi are empty, which means all the tasks allo-
cated to Gi complete, AATS allows c to execute tasks allocated to other c-groups in
order to balance the workloads among different c-groups dynamically. The complex-
ity arises when deciding which c-group to choose in this situation. The following
preference-based work-stealing strategy gives our solution. In the preference-based
work-stealing policy, each core is given a preference list of task clusters. Each task
cluster contains multiple task pools. The preference list of a core contains all the k
task clusters that are ordered as detailed below.

Algorithm 9 Preference-based task scheduling
Require: A core c from the c-group Gi
Require: c’s preference list {Gi, ..., Gk , Gi−1..., G1}
1: ObtainNewTask()
2: {
3: while (c has not obtained a task)
4: {
5: for (each Gj ∈ {Gi, ..., Gk , Gi−1..., G1})
6: {
7: while (not all the task pools allocated to Gj are empty)
8: {
9: c randomly chooses a task pool Pa allocated to Gj ;
10: c tries to obtain a task t from Pa ;
11: if (succeed) {
12: return t ;
13: }
14: }
15: }
16: }
17: }

For core c in the c-group Gi, its preference list is created as {Gi, Gi+1, ..., Gk ,
Gi−1, Gi−2, ..., G1} as shown in Fig. 5.8. We design a help-the-weaker-first principle
to guide the generation of the preference list in the figure. This principle can help

www.manaraa.com

138 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

reduce the makespan. For example, if a core obtains a task that is allocated to faster
cores, it needs a long time to execute the obtained task, which may prolong the
makespan. On the contrary, if a core obtains a task that is allocated to slower cores,
it can execute the obtained task in a shorter time and relieve the pressure on slow
cores. However, this preference list does not prevent slow cores to obtain tasks from
fast cores. When the slow cores have no tasks to execute, they can obtain tasks from
the busy fast cores.

Once c decides to help which c-group Gj (1 ≤ j ≤ k), it randomly selects the
victim task pool from the task pools allocated to Gj following the same strategy
described in Sect. 5.8.1. Algorithm 9 shows the preference-based task scheduling
algorithm adopted by each core for obtaining a new task.

Figure 5.9 shows an example runtime structure of AATS on an asymmetric quad-
core architecture with three different types of cores. That is, there are three c-groups
G1 (with core c0), G2 (with c1 and c2) and G3 (with c3).

Therefore, task classes are classified into 3 task clusters (G1, G2 and G3) accord-
ingly. Table 5.5 shows the corresponding preference lists of G1, G2 and G3. The
preference lists of the four cores are generated based on the help-the-weaker-first
principle in Fig. 5.8. For example, c3 will always look for tasks from the G3 pools
first, which have the tasks that are allocated to c3’s c-group using the history-based
task allocator. Then it will search the G2 pools, and finally the G1 pools.

... ...

First
Second

Task Cluster

Task Pool

Descending order of execution time on the fastest core

Fig. 5.8 Preference list of the core c in the c-group Gi

Fig. 5.9 An example
runtime structure of AATS

c3

G1 G2 G3

c0 c1 c2

www.manaraa.com

5.9 Implementation Methodology of AATS 139

Table 5.5 The corresponding preference lists of the c-groups in Fig. 5.9

C-group Core Preference list

G1 c0 {G1,G2,G3}
G2 c1 and c2 {G2,G3,G1}
G3 c3 {G3,G2,G1}

5.9 Implementation Methodology of AATS

AATS has been implemented by modifying MIT Cilk. MIT Cilk is one of the earliest
open source parallel programming environments that implement work-stealing [8].

We have ported MIT Cilk to support the preference-based work-stealing policy.
To help task classification, we have modified cilk2c to record a task’s function name
in the task frame. When a new task is spawned, it is subsumed into its task class and
pushed into the corresponding task pool according to its function name stored in the
task frame. In AATS, each worker tracks the execution time of the tasks executed by it.
Once a task is completed, the worker updates the information of the correspondence
task class.

AATS launches a helper thread that implements the history-based task allocation
policy at runtime. The helper thread periodically (e.g., every 1ms) checks every core
to find out if it has completed some tasks. Once there is a completed task, the helper
thread updates the information of the correspondence task class. The helper thread
is scheduled by the OS to any free core at runtime. Our experimental results show
that the extra overhead incurred by the helper thread is very small.

We have ported Cilk to spawn tasks adopting the parent-first policy since AATS
tends to generate all the tasks as soon as possible so that the history-based task
allocator can allocate them to different c-groups in a short time. In addition, it is
difficult to collect the workload information of tasks with the child-first policy. If a
core is executing a task γ , with the child-first policy, it is very likely the core will also
execute γ ’s child tasks before γ is completed. Therefore, γ ’s workload information
may not be collected correctly as it could include the workloads of γ ’s child tasks.
As a result, we have modified cilk2c to spawn tasks with the parent-first policy.

In order to construct the duration table of a program, for each task class, we need to
collect the IPCs of its tasks on cores of all the c-groups using hardware performance
counters. Based on the duration table, we can apply Algorithm 8 to allocate task
classes to c-groups. If not all the items in the duration table are determined, the
task classes cannot be allocated to different c-groups appropriately. To collect the
information as soon as possible, motivated by random work-stealing strategy [8],
any core c will grab a task from a random task pool when c is free. After all the task
classes are built, the history-based task allocator can allocate task classes to c-groups
and then AATS adopts preference-based task scheduler to balance the workloads
dynamically.

www.manaraa.com

140 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

An interesting detail of the AATS implementation is that AATS schedules the main
task of a parallel program on the fastest core as in [21]. This is because the main
task often has time-consuming serial initialization code before spawning tasks. If the
main task is executed by a slow core, it will increase the makespan of the program.
To exclude the impact of this optimization, we make all the other schedulers in the
experiment section launch the main task on the fastest core, though those schedulers
may launch the main task on a randomly chosen core. If the chosen core is slow,
which is very likely, their performance will be even worse.

Not surprisingly, AATS has a limitation. If most tasks in an application execute
the same function, the history-based task allocation algorithm can only identify a few
task classes that cannot be evenly allocated to the c-groups. For example, recursive
divide-and-conquer programs such as nqueens and fib are not suitable for AATS. To
cope with this problem, we have modified the compiler cilk2c to check for the divide-
and-conquer programs at compile time by analyzing the task generating pattern in
the source code. If any function in the source code generates new tasks that run the
same function as itself, the program is assumed to be a divide-and-conquer program.
For divide-and-conquer programs, the task scheduling policies introduced in previous
chapters can be used instead to schedule the program. Therefore, the above limitation
will not affect the applicability of AATS since the compiler can identify the class of
programs that are suitable for AATS.

5.10 Performance of AATS

In this section, we evaluate AATS, including its performance over the current task
schedulers, the effectiveness of the preference-based work-stealing policy in AATS,
and the scalability of AATS. After that, we discuss that whether we should integrate
task snatching into AATS or not. Lastly, we discuss other issues related to AATS.

5.10.1 Experimental Configurations

We use a 16-core server that has four AMD Quad-core Opteron 8380 processors
(codenamed “Shanghai”) and a 32-core server that has four Intel Octal-core Xeon(R)
X7560 processors to evaluate the performance of AATS. In the AMD Opteron 8380
processor, each core can run at 2.5, 1.8, 1.3 and 0.8GHz. In the Intel Xeon X7560
processor, each core can run at 11 different frequencies. We adjust the frequency of
each core to emulate different single-ISA AMC architectures in the experiment. To
emulate AMC architectures, we use all the four possible frequencies in the server
built with AMD processors. We use 2.262, 1.862, 1.463 and 1.064 GHz in the server
built with Intel processors.

Figure 5.10 provides the topology of the emulated AMC architectures. We use A-
a-b-c-d to represent the emulated AMC architecture on AMD server that has a cores

www.manaraa.com

5.10 Performance of AATS 141

Shared cache

...

a b c d

Shared cache

...

Shared cache

...

Shared cache

... Core

CPU

Fig. 5.10 Topology of the emulated AMC architectures. The numbers of cores running at four
different frequencies are a, b, c and d respectively

Table 5.6 The emulated AMC architectures in the experiment

AMD-based server 2.5 GHz 1.8 GHz 1.3 GHz 0.8 GHz

A-2-2-2-10 2 2 2 10

A-4-4-4-4 4 4 4 4

A-2-0-0-14 2 0 0 14

A-4-0-0-12 4 0 0 12

A-8-0-0-8 8 0 0 8

A-12-0-0-4 12 0 0 4

A-16-0-0-0 16 0 0 0

Intel-based server 2.262 GHz 1.862 GHz 1.463 GHz 1.064 GHz

I-8-0-0-24 8 0 0 24

I-8-8-8-8 8 8 8 8

I-16-0-0-16 16 0 0 16

I-24-0-0-8 24 0 0 8

I-32-0-0-0 32 0 0 0

running at 2.5GHz, b cores running at 1.8GHz, c cores running at 1.3 GHz and d
cores running at 0.8GHz. Similarly, we use I-a-b-c-d to represent the emulated AMC
architecture on Intel server that has a cores running at 2.262GHz, b cores running at
1.862GHz, c cores running at 1.463 GHz and d cores running at 1.064GHz.

Note that, Intel processors do not support per-core DVFS but only support per-
CPU DVFS. Table 5.6 lists the emulated AMC architectures.

Because AATS is proposed to improve the performance of both batch and non-
batch applications with tasks that have different workloads, we use benchmarks listed
in Table 5.7, to evaluate the performance of AATS.

The source code of benchmarks are from their official websites [16] but adapted
to run on MIT Cilk. In the batch-based benchmarks, the program launches different
numbers of independent tasks (more than 128 tasks on AMD-based server and 256
tasks on Intel-based server) in different batches. In these benchmarks, tasks work on
independent data sets of different sizes in parallel. For instance, in our configuration,
LZW compresses more than 128 files of different sizes in parallel. Because the size of
data set for different tasks are different, the workloads of tasks are different as well.
In the pipeline-based benchmarks, the execution of a program has several parallel

www.manaraa.com

142 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

Table 5.7 Benchmarks used in the experiments

Name Type Description

BWT Batch-based Burrows wheeler transform

DMC Batch-based Dynamic markov coding

GA Batch-based Island model of genetic algorithm [26]

LZW Batch-based Lempel-Ziv-Welch data compression

MD5 Batch-based Message digest algorithm

SHA-1 Batch-based SHA-1 cryptographic hash function

Dedup Pipeline-based Dedup from PARSEC benchmark suite [3]

Ferret Pipeline-based Ferret from PARSEC benchmark suite [3]

stages. Tasks in different stages run in parallel but communicate with each other via
pipelines. For each test, every benchmark is run ten times. Because the execution
time is quite stable, the average execution time is used as the result.

For pipeline-based benchmarks, AATS allocates tasks to c-groups adopting the
method in Sect. 5.7.1.1. For batch-based benchmarks, AATS allocates tasks to c-
groups adopting the method in Sect. 5.7.1.2.

We compare the performance of AATS with the performance of three other task
schedulers: MIT Cilk, PFWS and RTS in AMC architectures. Although MIT Cilk
is originally proposed to balance fine-grained tasks [4], the internal work-stealing
strategy is still one of the most efficient dynamic load-balancing strategies to bal-
ance coarse-grained tasks, such as tasks in batch-based programs and pipeline-based
programs [17–19].

In MIT Cilk (denoted as Cilk for short) [4], tasks are spawned with the child-first
policy and scheduled with the traditional work-stealing policy. In PFWS (Parent-First
Work-Stealing) [9], parallel tasks are spawned with the parent-first policy and sched-
uled with the traditional work-stealing policy. In RTS (Random Task-Snatching) [1],
tasks are also spawned and scheduled as in Cilk, but a faster core snatches tasks from
a randomly chosen slower core if the faster core cannot steal any task. The snatch
operation is implemented by swapping the two threads on the faster core and the
slower core.

To evaluate the effectiveness of the help-the-weaker-first policy„ we also compare
the performance of AATS with AATS-NP, a scheduler that adopts the history-based
task allocator but cores in one c-group are not allowed to obtain tasks that are allocated
to other c-groups. In this way, AATS-NP is able to show only the performance of the
history-based task allocator. To ensure fairness of comparison, AATS, PFWS, RTS
and AATS-NP are implemented by modifying MIT Cilk.

www.manaraa.com

5.10 Performance of AATS 143

5.10.2 Performance on Emulated Platform

We have tested the performance of the benchmarks in all the 6 + 4 = 10 AMC
architectures and the 1 + 1 = 2 symmetric multi-core architectures. In the following
experiments, the performance of a benchmark is normalized to its performance with
the traditional random work-stealing scheduler, Cilk.

Figure 5.11 presents the performance of the batch-based benchmarks in all the
emulated AMC architectures and Fig. 5.12 presents the performance of the pipeline-
based benchmarks in all the emulated AMC architectures. In Figs. 5.11 and 5.12, the
y axis on the left is the execution time of the benchmarks in AMC emulated on the

(a) BWT (b) DMC

(c) LZW (d) MD5

(e) SHA-1 (f) GA

Fig. 5.11 Performance of the batch-based benchmarks in the AMC architectures emulated on both
the AMD-based server and Intel-based server

www.manaraa.com

144 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

AMD server and the y axis on the right is the execution time of the benchmarks in
AMC emulated on the Intel server.

From Fig. 5.11 we can find that AATS can significantly improve the performance
of the batch-based benchmarks in all the emulated AMC architectures. In A-2-2-2-10
to A-12-0-0-4 that are emulated on the AMD server, AATS improves the performance
of batch-based benchmarks, with the performance gains ranging from 10.7 to 66.1%
compared to Cilk and PFWS, and with performance gains ranging from 2.4 to 65.6%
compared to RTS. In I-8-0-0-24 to I-24-0-0-8 that are emulated on the Intel server,
AATS improves the performance of batch-based benchmarks, with the performance
gains ranging from 3.3 to 38.1% compared to Cilk and PFWS, and with the perfor-
mance gains ranging from 4.2 to 51.1% compared to RTS. For example, for SHA-1
in A-4-0-0-12 in Fig. 5.11e, AATS reduces the execution time up to 66.1% compared
to Cilk. For LZW in I-8-8-8-8 in Fig. 5.11c, AATS reduces the execution time up to
38.1% compared to Cilk.

Figure 5.12 shows that AATS can significantly improve the performance of the
pipeline-based benchmarks in all the AMC architectures. In A-2-2-2-10 to A-12-
0-0-4, AATS improves the performance of pipeline-based benchmarks, with the
performance gains up to 29.1% compared to Cilk and PFWS, and with performance
gains up to 28.2% compared to RTS. In I-8-0-0-24 to I-24-0-0-8, AATS improves
the performance of pipeline-based benchmarks, with the performance gains up to
44.9% compared to Cilk and PFWS, and with the performance gains up to 36.8%
compared to RTS.

The good performance of AATS comes from its balanced workloads in the AMC
architectures. With the history-based task allocator, AATS allocates tasks with heavy
workload to fast cores and tasks with light workload to slow cores. Even if the
workloads are not balanced as expected due to approximation, AATS can dynamically
balance the workloads in AMC using the preference-based task scheduler.

On the contrary, in Cilk and PFWS, it is very likely that long tasks are scheduled
to slow cores since tasks are stolen randomly. Scheduling a task with heavy workload
to a slow core can seriously prolong the makespan of parallel tasks.

(a) Dedup (b) Ferret

Fig. 5.12 Performance of the pipeline-based benchmarks in the AMC architectures emulated on
both the AMD-based server and Intel-based server

www.manaraa.com

5.10 Performance of AATS 145

From Fig. 5.11, we can find that AATS performs better for batch-based programs in
the AMCs emulated on the AMD server than the AMCs emulated on the Intel server.
The better performance on the AMD server comes from the large gap between the
fast core speed and the slow core speed. As shown in Table 5.6, the speed of the
slowest cores is only 0.8

2.5 = 32% of the speed of the fastest cores in A-2-2-2-10 to
A-12-0-0-4 while the speed of the slowest cores is 1.064

2.262 = 47% of the speed of the
fastest cores in I-8-0-0-24 to I-24-0-0-8. A task with heavy workload is slowed down
by more times in A-2-2-2-10 to A-12-0-0-4 if the task is scheduled to a slow core.
Therefore, the larger the gap between the fastest cores and the slowest cores in an
AMC architecture is, the more AATS can improve the performance of applications
that have tasks with different workloads.

Compared to Cilk and PFWS, RTS can also improve the performance of most
benchmarks in AMC architectures. This is because in RTS faster cores can randomly
snatch tasks from slower cores and the snatched tasks can be completed earlier, which
can reduce the makespan of the parallel tasks. As a result, comparing to Cilk and
PFWS, for most benchmarks, RTS improves the performance of the benchmarks
up to 60.9% in A-2-2-2-10 to A-12-0-0-4 emulated on the AMD-based server and
up to 35.6% in I-8-0-0-24 to I-24-0-0-8 emulated on the Intel-based server.

However, for many other benchmarks, such as GA in A-2-0-0-14 and MD5 in I-24-
0-0-8, RTS even degrades the performance of the benchmarks due to the overheads
that come from the frequent task snatching (or context switching). In addition, since
RTS is not aware of the workloads of the tasks, it is possible for faster cores to snatch
tasks with light workload, in which case the makespan cannot be reduced. Especially,
in AMC emulated in Intel server, there are overall 32 cores. The large number of
cores often lead to more task snatching operations in RTS. Therefore, RTS performs
poor in I-8-0-0-24 to I-24-0-0-8 and it performs much worse than AATS.

For symmetric multi-core architectures, AATS schedules tasks in the similar way
as PFWS. Therefore, as shown in Figs. 5.11 and 5.12, AATS performs the same as
PFWS on A-16-0-0-0 and I-32-0-0-0. The overhead in AATS is negligible compared
with traditional work-stealing in symmetric architecture.

Figures 5.11 and 5.12 also show that AATS can adapt to different AMC architec-
tures and improve performance of benchmarks automatically. In addition, when an
AMC architecture has a small number of fast cores (e.g., 8 fast cores in I-8-0-0-24,
2 fast cores in A-2-0-0-14), the frequent context switching on fast cores that comes
from task snatching reduces the computing time of fast cores on tasks. In this case,
RTS degrades the overall performance of some benchmarks (e.g., GA) compared
with Cilk and PFWS.

5.10.3 Effectiveness of the Preference-Based Work-Stealing

Figures 5.11 and 5.12 also shows the performance of batch-based programs and the
performance of pipeline-based programs with AATS-NP. As shown in the two figures,

www.manaraa.com

146 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

the performance of AATS is always better than the performance of AATS-NP. Espe-
cially, for Dedup in I-8-8-8-8, AATS-NP even prolongs the execution time of Dedup
up to 32.3% compared to AATS. For GA in A-4-4-4-4, AATS-NP even prolongs
the execution time of GA up to 45.8% compared to AATS. The preference-based
work-stealing policy in AATS is very helpful when handling slightly unbalanced
workloads. Since the history-based task allocation may mis-allocate the tasks to the
wrong c-groups due to its static approximation of the workloads of dynamic tasks,
the preference-based work-stealing can remedy this imprecision. To this end, we can
conclude that the preference-based work-stealing works effectively in AMC archi-
tectures.

It is worth noting that the history-based task allocation has mostly done effective
allocation of tasks according to Figs. 5.11 and 5.12. AATS-NP performs better than
Cilk and PFWS, which means the history-based allocation algorithm is more effective
than random task stealing in terms of load-balancing in AMC architecture.

In symmetric architectures (i.e., A-16-0-0-0 and I-32-0-0-0), AATS schedules
tasks in a similar way to the pure parent-first work-stealing policy. From the figures,
we can find that the benchmarks achieve similar performance in AATS, PFWS and
Cilk in A-16-0-0-0 and I-32-0-0-0 that have symmetric cores respectively. Therefore,
the overhead in AATS (mainly caused by the helper thread) is negligible compared
with traditional work-stealing in symmetric architecture.

5.10.4 Scalability of AATS

Figure 5.13 evaluates the scalability of AATS. It gives the performance of GA under
different distributions of workloads in A-8-0-0-8 and I-24-0-0-8, though other bench-
marks show similar results in various AMC architectures. In the AMC emulated on
AMD server that has 16 cores, GA launches 128 tasks with 4 different workloads
in each batch. In the AMC emulated on Intel server that has 32 cores, GA launches
256 tasks with 4 different workloads in each batch. The number of tasks with each
type of workload is adjusted to evaluate the scalability of AATS when the number
of tasks with heavy workload increases. In Fig. 5.13a, the distribution of workloads
from high to low follows the pattern α, α, α, 128 − 3α. In Fig. 5.13b, the distribution
of workloads from high to low follows the pattern α, α, α, 256 − 3α. In both the two
figures, α is adjusted as shown by the x-axis in the figures. In Fig. 5.13, the fastest
core needs less than 200µs to process the tasks with the lowest workload and needs
less than 10 ms to process the tasks with the highest workload.

From the figure we can see that AATS works fine under different distributions
of workloads. In A-8-0-0-8, when α is small and the workloads are mostly light,
AATS reduces the GA execution time by 55.4% compared to Cilk. When α is large
and the workloads are mostly heavy, AATS can still reduce the execution time by
17.2% compared to Cilk. In I-24-0-0-8, when α is small, AATS reduces the GA
execution time by 22.8% compared to Cilk. When α is large and the workloads are

www.manaraa.com

5.10 Performance of AATS 147

Fig. 5.13 Performance of
GA with different workloads
in A-8-0-0-8 and I-8-0-0-24
with Cilk, PFWS, RTS, and
AATS

(a) A-8-0-0-8

(b) I-24-0-0-8

mostly heavy, AATS can still reduce the execution time by 8.1% compared to Cilk.
Therefore, AATS is scalable with and can adapt to different workloads.

However, in A-8-0-0-8 as shown in Fig. 5.13a, RTS does not work well when
the workloads are mostly heavy (e.g. α is 20), as it even degrades the performance
of GA by 54.1% compared to Cilk and PFWS. This is because fast cores are not
able to snatch all the heavy tasks that are allocated to the slow cores when there are
too many heavy tasks. Moreover, the computing ability of fast cores is wasted at
frequent context switching when the workloads are mostly heavy. This result again
supports our philosophy of AATS that an optimal task allocation is more important
than rescuing policies such as task snatching.

In I-24-0-0-8 as shown in Fig. 5.13b, RTS works even worse than Cilk and PFWS
for all the workloads as it degrades the performance up to 10.7% compared to Cilk.
In I-24-0-0-8, the reduced execution time of GA that origins from task snatching in
RTS is small since the difference between the speed of fast cores and the speed of
slow cores is small. It is quite possible that the reduced execution time is smaller
than the increased execution time that origins from the context switching in RTS.
Therefore, if the gap between the speed of fast cores and the speed of slow cores is
small, the performance of RTS is poor.

www.manaraa.com

148 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

5.10.5 Integrating Task-Snatching in AATS

It is also of interest to discover whether or not the task-snatching technique is also
effective to AATS and thus should be integrated into AATS. To investigate this issue,
we implemented a scheduler AATS-TS, where fast cores snatch tasks from slow
cores when the fast cores cannot obtain any tasks using the preference-based task
scheduling policy.

In AATS-TS, when a core intends to snatch a task, it selects a slower core with
the largest task. In this way, large tasks that affect the makespan seriously can be
snatched to fast cores and completed earlier. Therefore, our workload-aware snatch-
ing policy is better than the random snatching in RTS, as explained in Sect. 5.3.1.
Moreover, workload-aware snatching causes fewer snatching operations than the
random snatching, since randomly snatched small tasks take less time for the fast
cores to complete, which causes the fast cores to snatch more often.

Figure 5.14 also shows the performance of the benchmarks in AATS and AATS-TS
in A-4-0-0-12 and I-8-8-8-8. From the figure we see surprisingly that the performance
of AATS-TS is slightly worse than AATS. Especially, for BWT and Ferret in A-4-0-

Fig. 5.14 Performance of
the benchmarks in AATS,
AATS-OLD and AATS-TS

(a) A-4-0-0-12

(b) I-8-8-8-8

www.manaraa.com

5.10 Performance of AATS 149

0-12 and DMC and Ferret in I-8-8-8-8, AATS-TS increases the execution time up to
14.2% compared to AATS.

Figure 5.14 tells us that AATS has satisfactorily balanced the workloads in AMC
architectures. When the workloads are balanced among cores in AMC, it is not
worthwhile to snatch tasks from slower cores since the slower cores are also close
to completion. The extra overhead incurred by the snatching operations simply
makes AATS-TS perform worse. Therefore, there is no need for AATS to adopt
task-snatching.

5.11 Summary

Single-ISA AMCs are promising due to their high performance and power efficiency.
It is essential for parallel applications to run on AMC architectures efficiently. Though
task scheduling policies like work-stealing work efficiently for parallel applications
in symmetric multi-core architectures, they cannot balance the workloads well in
AMC since they have no knowledge of task workloads and schedule tasks randomly
to the performance-asymmetric cores.

From our theoretical analysis, we know that the initial optimal task allocation is
more crucial to the makespan than any rescuing means for a non-optimal allocation
and that static task allocation can produce near-optimal allocation if the workloads
of the tasks are known. Therefore, we propose history-based task allocation policy
that takes advantage of the static allocation by using the historical statistics of the
tasks to predict the execution time of future tasks on cores in different c-groups.
From our experiments we showed that the history-based task allocator can produce
appropriate allocation and its extra overhead is small.

For any occasional inaccurate or incorrect allocation of tasks, the preference-based
work-stealing policy comes to play. It can remedy any slightly unbalanced allocation
and effectively schedule tasks among c-groups. The experimental results show that
AATS is effective and our approach to the scheduling problem in single-ISA AMC
is valid.

In summary, AATS can significantly improve the performance of applications
that consist of tasks with different workloads in all the emulated AMC architec-
tures. Especially, AATS can adapt to various AMC architectures automatically and
the performance of AATS is better when there are more fast cores in AMC. The
experiment also justifies that both the history-based task allocation policy and the
preference-based work-stealing policy in AATS are effective. In addition, although
the task-snatching policy in RTS can improve the performance of applications inde-
pendently, the integrating of task-snatching with AATS degrades the performance of
AATS.

www.manaraa.com

150 5 Dynamic Load Balancing for Asymmetric Multi-core Architecture

5.11.1 Chapter Highlights

The following highlights of this chapter could be of your interest:

• We have identified, defined, and formalized the problem of unbalanced work-
loads in AMC architectures and have given theoretical guidance to optimal task
allocation in AMC architectures.

• We have proposed a history-based task allocation strategy that can allocate tasks
in single-ISA AMC architectures near-optimally.

• We have proposed a novel preference-based work-stealing strategy that can effec-
tively balance workloads among different groups of cores.

• Based on the above techniques, we have implemented AATS, which achieves a
performance gain of up to 66.1% compared to the random work-stealing approach
commonly employed.

References

1. M. Bender and M. Rabin, “Scheduling Cilk multithreaded parallel programs on processors of
different speeds,” in Proceedings of the 12nd annual ACM Symposium on Parallel Algorithms
and Architectures. ACM, 2000, pp. 13–21.

2. M. Bhadauria and S. McKee, “An approach to resource-aware co-scheduling for cmps,” in
Proceedings of the 24th ACM International Conference on Supercomputing. ACM, 2010, pp.
189–199.

3. C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite: characterization
and architectural implications. In Proceedings of the 17th international conference on Parallel
architectures and compilation techniques, pages 72–81. ACM, 2008.

4. R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H. Randall, and Y. Zhou, “Cilk:
An efficient multithreaded runtime system,” Journal of Parallel and Distributed Computing,
vol. 37, no. 1, pp. 55–69, Aug. 1996.

5. Q. Chen, M. Guo, Q. Deng, L. Zheng, S. Guo, and Y. Shen. Hat: history-based auto-tuning
mapreduce in heterogeneous environments. The Journal of Supercomputing, pages 1–17, 2013.

6. Q. Chen, and M. Guo. Adaptive workload-aware task scheduling for single-ISA asymmetric
multicore architectures. ACM Transactions on Architecture and Code Optimization, 11(1):8,
2014.

7. M. De Vuyst, R. Kumar, and D. Tullsen, “Exploiting unbalanced thread scheduling for energy
and performance on a cmp of smt processors,” in Proceedings of the 2006 IEEE International
Parallel and Distributed Processing Symposium. IEEE, 2006, pp. 10–20.

8. M. Frigo, C. E. Leiserson, and K. H. Randall, “The implementation of the Cilk-5 multithreaded
language,” in Proceedings of the ACM SIGPLAN ’98 Conference on Programming Language
Design and Implementation. Montreal, Canada: ACM, Jun. 1998, pp. 212–223.

9. Y. Guo, R. Barik, R. Raman, and V. Sarkar, “Work-first and help-first scheduling policies for
async-finish task parallelism,” in Proceedings of the 2009 IEEE International Parallel and
Distributed Processing Symposium. IEEE Computer Society, 2009, pp. 1–12.

10. S. Hofmeyr, C. Iancu, and F. Blagojević, “Load balancing on speed,” in Proceedings of the
15th ACM SIGPLAN symposium on Principles and Practice Of Parallel Programming. ACM,
2010, pp. 147–158.

11. J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt. Bottleneck identification and schedul-
ing in multithreaded applications. In Proceedings of the 17th International Conference on

www.manaraa.com

References 151

Architectural Support for Programming Languages and Operating Systems, pages 223–234,
2012.

12. D. Koufaty, D. Reddy, and S. Hahn, “Bias scheduling in heterogeneous multi-core architec-
tures,” in Proceedings of the 5th European conference on Computer systems. ACM, 2010, pp.
125–138.

13. N. Lakshminarayana, J. Lee, and H. Kim, “Age based scheduling for asymmetric multiproces-
sors,” in Proceedings of the Conference on High Performance Computing Networking, Storage
and Analysis. ACM, 2009, p. 25.

14. T. Li, D. Baumberger, D. Koufaty, and S. Hahn, “Efficient operating system scheduling for
performance-asymmetric multi-core architectures,” in Proceedings of the 2007 ACM/IEEE
Conference on SuperComputing. ACM, 2007, pp. 1–11.

15. J. Liu and C. Liu, Bounds on scheduling algorithms for heterogeneous computing systems.
Dept. of Computer Science, University of Illinois at Urbana-Champaign, 1974.

16. M. Mahoney. Data compression programs, 2013.
17. C. Maia, L. Nogueira, and L. M. Pinho. Scheduling parallel real-time tasks using a fixed-priority

work-stealing algorithm on multiprocessors. In the 8th International Symposium on Industrial
Embedded Systems. IEEE, 2013.

18. S. Mattheis, T. Schuele, A. Raabe, T. Henties, and U. Gleim. Work stealing strategies for
parallel stream processing in soft real-time systems. In Architecture of Computing Systems,
pages 172–183. Springer, 2012.

19. A. Navarro, R. Asenjo, S. Tabik, and C. Caşcaval. Load balancing using work-stealing for
pipeline parallelism in emerging applications. In Proceedings of the 23rd international confer-
ence on Supercomputing, pages 517–518. ACM, 2009.

20. A. Rosenberg and R. Chiang, “Toward understanding heterogeneity in computing,” inProceed-
ings of the 2010 IEEE International Parallel and Distributed Processing Symposium. IEEE,
2010, pp. 1–10.

21. J. C. Saez, A. Fedorova, M. Prieto, and H. Vegas. Operating system support for mitigating
software scalability bottlenecks on asymmetric multicore processors. In Proceedings of the 7th
ACM international conference on Computing frontiers, pages 31–40. ACM, 2010.

22. J. C. Saez, M. Prieto, A. Fedorova, and S. Blagodurov. A comprehensive scheduler for asym-
metric multicore systems. InProceedings of the 5th European conference onComputer systems,
pages 139–152. ACM, 2010.

23. D. Shelepov, J. Saez Alcaide, S. Jeffery, A. Fedorova, N. Perez, Z. Huang, S. Blagodurov, and
V. Kumar. Hass: a scheduler for heterogeneous multicore systems. ACM SIGOPS Operating
Systems Review, 43(2):66–75, 2009.

24. M. Suleman, O. Mutlu, M. Qureshi, and Y. Patt, “Accelerating critical section execution with
asymmetric multi-core architectures,” in Proceeding of the 14th international conference on
Architectural Support for Programming Languages and Operating Systems. ACM, 2009, pp.
253–264.

25. K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and J. Emer. Scheduling heterogeneous
multi-cores through performance impact estimation (pie). In Proceedings of the 39th Interna-
tional Symposium on Computer Architecture, pages 213–224. IEEE Press, 2012.

26. L. Zheng, Y. Lu, M. Ding, Y. Shen, M. Guo, and S. Guo. Architecture-based performance eval-
uation of genetic algorithms on multi/many-core systems. In the 14th International Conference
on Computational Science and Engineering, pages 321–334. IEEE, 2011.

www.manaraa.com

Chapter 6
Load Balancing for Heterogeneous Parallel
Architecture

Abstract Besides traditional CPU-based parallel computer, heterogeneous parallel
architectures that consists of bothCPU andGPGPUare used inmany emerging large-
scale clusters/supercomputers. In order to better utilize both the CPU and GPU, an
application could divide and distribute its workload to the two types of hardware
at the same time. However, it is not trivial to find an optimal allocation for all the
applications offline, because applications often have various characters thus different
applications have different speedup ratio on GPGPU compared with that on CPU. In
order to solve this problem, this chapter presents the techniques that can balance the
application workload across heterogeneous hardware.

6.1 Background and Existing Problems

Heterogeneous parallel architecture that consists of traditional CPU and accelerators
are becoming more and more popular in large-scale datacenters/clusters. Accel-
erators, such as GPGPU and FPGA, often could provide much higher processing
power if the target application can adapt to the architecture of the accelerator. Many
researchers have.

Although heterogeneous systems with CPU and accelerator are widely used, pro-
grammers may not utilize them efficiently since it is challenging for the programmer
to split and balance the workload between CPU and the accelerator. Without loss of
generality, in this chapter, we use GPGPU as the represent accelerator.

In order to utilize both CPU and GPU efficiently, emerging task schedulers often
leverage data parallelism to distribute the workload for heterogenous parallel archi-
tectures. Leveraging data parallelism, the task scheduler partitions the data (work-
load) of an application into multiple parts, and allocates different parts to different
devices so that they can process the data concurrently.

Many scheduling strategies, either static or dynamic, have been proposed to bal-
ance the workload between CPU and GPU. In a static policy, the workload is split

Part of contents in this chapter has been published through International Workshop on Pro-
gramming Models and Applications for Multicores and Manycores. Reprinted from Ref. [14],
with permission from ACM.

© Springer Nature Singapore Pte Ltd. 2017
Q. Chen and M. Guo, Task Scheduling for Multi-core and Parallel Architectures,
https://doi.org/10.1007/978-981-10-6238-4_6

153

www.manaraa.com

154 6 Load Balancing for Heterogeneous Parallel Architecture

Fig. 6.1 Performance of GPU when it is allocated different amount of workload (the higher the
better)

and distributed to CPU and GPU statically. Static strategies often cause unbalanced
workload because it is chanllenging to predict the performance of GPU for a partic-
ular program without knowing the details of the runtime. GPU is highly sensitive to
scale of theworkload. The performance is unknown to the schedulerwithout previous
executions.

In order to better illustrate the above problem, as shown in Fig. 6.1, we allocate
different percentages of an application’s workload to GPU and compare the per-
formance. The detailed experimental platform and the benchmarks can be found in
Sect. 6.5. In the figure, for an application, the x-axis indicates the percentage of its
workload allocated to GPU and y-axis is the performance of GPU normalized to its
performance onCPU.Let IPCgpu and IPCcpu represent the instruction-per-cycle (IPC)
of the application on GPU and on CPU, respectively. The normalized performance
of GPU (denoted by Pgpu) is calculated in Eq.6.1.

Pgpu = IPCgpu

IPCcpu
(6.1)

Observed from the figure, the performance of GPU increases while more work-
loads are allocated to it. Furthermore, its performance increases rapidly at the begin-
ning of the curve but goes stable at the end of the curve. The poor performance of
GPU when its workload is small is due to the synchronization overhead between
CPU and GPU. To this end, if the workload of an application is divided into a great
amount of small chunks, and then balance the workloads across CPU and GPU in
fine granularity, the computational ability of GPU is not fully utilized. It is beneficial
if we can find the optimal allocation and assign a large chunk of the whole workload
to GPU once instead of splitting it into many small chunks.

However, it is challenging to find the optimal allocation because the performance
of GPU for an application varies non-linearly while it is allocated different amount
of workload. If the scheduling granularity is too small, the synchronization over-

www.manaraa.com

6.1 Background and Existing Problems 155

head hurts the overall performance. On the contrary, if the scheduling granularity
is too large, it is hard to balance the workload. To conclude, both the scheduling
granularity and the load-balancing significantly impacts the overall performance of
an application on heterogeneous parallel architecture. In this chapter, considering
the two factors, we introduce a Heterogeneous-Aware Task Scheduler (HATS) that
balances workload across CPU and GPU while still fully utilizing both of them.

6.2 Prior Solutions

GPU programming is becoming an important issue in the parallel programming
area. Some programming language extensions like CUDA [11], Brook+ [3] and
OpenCL [10] are published to utilize the hardware’s raw performance. But the per-
formance of these extensions are not portable between devices because they are close
to the hardware. They can get good performance but programmers need to have a
good understanding of the hardware to efficiently use both CPU and GPU.

GPU’s performance characteristics have been deeply studied. [12] explored the
optimizations of GPU and shows that a fully optimized GPU program is much faster
than an unoptimized GPU program. [15] and [6] used performance models and
analyzed the instructions that generated by NVCC to predict the performance of
GPU statically. [2] made a tool that does the analysis automatically. [7] extended
[6] by integrating a power model into their performance model to get more detailed
analysis. These models can be used in static analysis of the performance of GPU but
it is not useful at runtime because it introduces much overhead.

GPU+CPU co-scheduling is also getting attention with the increasing usage of
GPU in high performance computing. Several platforms are designed and imple-
mented to combine the processing power of CPU andGPU.Mars [5] usedMapreduce
as its programming paradigm. StarPU [1], Qilin [8] and Scout [9] offered different
methods to map tasks to CPU and GPU. OmpSS [4] extended OpenMP to provide
co-scheduling ability. These platforms require the programmer to rewrite their code
using a new programming language in the case of StarPU or Scout or using spe-
cific APIs in Mars and Qilin. In the following of this section, we introduce several
widely-used techniques that balance theworkload of an application toCPUandGPU.

6.2.1 Static Scheduling

Static workload scheduling, which statically splits and allocates theworkload to CPU
andGPUbefore the programexecution, is the traditional policy. In this policy, theway
the workload is partitioned is determined by either the programmer or the scheduler.
Figure6.2 shows the traditional staticworkload scheduling for heterogeneous parallel
architecture.

www.manaraa.com

156 6 Load Balancing for Heterogeneous Parallel Architecture

CPU

GPU

Workload

Timeline

Makespan

Execution

Fig. 6.2 Static scheduling policy for heterogeneous parallel architecture

Observed from the figure, we can find that static scheduling only considers the
factor of scheduling granularity but often fails on balancing the workload. CPU and
GPU do not complete their tasks at the same time. This policy does not work well
for heterogeneous architecture because the performance of GPU varies for different
algorithms, different workload sizes and different application implementations. It
is not possible to find an optimal static allocating that performs the best for all the
applications.

Besides the naive static scheduling policy, researchers have also proposed sev-
eral variations to improve its performance. For instance, a scheduler could record
the execution time of an application on CPU and GPU in previous executions, and
calculate the performance of CPU and GPU for the application offline [8]. However,
this method is not helpful if a brand-new application is executed. In addition, even
for the same application, the optimal workload allocation may vary with the differ-
ent inputs. In another static scheduling variation, the scheduler analyzes the code
generated by the compiler to calculate the performance of a specific program on a
specific GPU. However these methods will fail if the program is executed on other
hardware environments because the previous execution time and the offline analysis
are no longer accurate.

To conclude, the static scheduling policy does not need synchronization between
CPUandGPU, thus has small overhead.However, the potential unbalancedworkload
may degrade the overall performance.

6.2.2 Quick Scheduling

In order to balance the workload, dynamic scheduling policy that decides the work-
load allocation based on the performance of CPU and GPU at runtime is proposed.
Quick scheduling policy [13] is a popular dynamic scheduling policy for heteroge-
neous architecture.

Figure6.3 shows the processing flow of an application on heterogeneous archi-
tecture with the quick scheduling policy. As shown in the figure, with the quick
scheduling policy, the scheduler first allocates a small portion of the workload to

www.manaraa.com

6.2 Prior Solutions 157

CPU

GPU

Workload

Timeline

Makespan

Profiling Execution

Fig. 6.3 Quick scheduling policy for heterogeneous parallel architecture

CPU and GPU to profile their performance for the given application. Based on the
collected performance information, the remaining of the workload is split and allo-
cated to them.

Let IPCcpu and IPCcpu represent the instruction-per-cycle (IPC) of the application
on CPU andGPU in the profiling step respectively, and letW represent the remaining
workload of the application. Equation6.2 calculates the amount of workloads that
should be allocated to CPU and GPU, denoted by Wcpu and Wgpu, in the execution
step.

Wcpu = W × IPCcpu

IPCcpu + IPCgpu
,Wgpu = W × IPCgpu

IPCcpu + IPCgpu
(6.2)

Observed from the figure, quick scheduling policy tries to maximize the workload
assigned toGPUwhile achieving good load-balance. Although it adjusts the partition
according to runtime information, the performance of GPU and GPU it calculates
may not be accurate. Because the performance of GPU changes when the workload
changes, GPUmay perform differently in the profiling step and in the execution step.

Recall that the performance of GPU becomes stable while its workload increases
(Sect. 6.1). Therefore, in order to improve the accuracy of performance prediction
for GPU in the execution step, we can increase the amount of the workload used in
the profiling step. However, it is challenging to find the optimal amount of workload
to use in the profiling step. If too much workload are used in the profiling step, the
overall performance could be seriously damaged because the partition in the first
step is usually not balanced. On the contrary, if too few workload are used in the
profiling step, the obtained performance of GPU is not accurate and thus results in
the poor load balance in the execution step.

To conclude, the quick scheduling policy does not introduce much synchroniza-
tion overhead. Compared with static scheduling policy, it can better balance the
workload across CPU and GPU, thus it is able to improve the performance of paral-
lel applications. However, because the profiled performance of GPU in the profiling
step may not accurate, the workload is not perfectly balanced across CPU and GPU
in the execution step.

www.manaraa.com

158 6 Load Balancing for Heterogeneous Parallel Architecture

6.2.3 Split Scheduling

In order to achieve the optimal load balance, researchers proposed split scheduling
policy [13]. Figure6.4 shows the split scheduling policy for heterogeneous paral-
lel architecture. As shown in the figure, in the policy, the whole workload of an
application is divided into several equal-sized chunks and the chunks are processed
sequentially. When the scheduler allocates the workload in a chunk to the CPU and
GPU, the percentage of the workload allocated to GPU is calculated according to the
GPU performance predicted from the execution of the previous chunk. The amount
of workload allocated to CPU and GPU in a chunk can be calculated in the same
way in Eq.6.2.

Observed from the figure, we can find that the split scheduling policy tries to get
the accurate performance of GPU over CPU. Compared with the static scheduling
policy and the quick scheduling policy, split scheduling can best balance theworkload
across the CPU and GPU, because it profiles in each chunk and collect much more
information than the other two polices. However, because it splits thewhole overhead
into many chunks, CPU and GPU need to synchronize with each other at the end
of the processing of each chunk. In this case, the split scheduling policy introduces
heavy synchronization overhead.

It is easy to find that the performance of the split scheduling is sensitive the the
size of the workload chunks. If the chunk size is too small, CPU and GPU needs to
synchronize with each other frequently and the overhead may degrade the overall
performance. On the other hand, if the chunk size of too large, the application may
complete before the best partitioning is achieved. In this case, the performance of
the application is also sub-optimal. In real-system scenario, it is challenging to find
the optimal chunk size because different applications often have different features
thus have different optimal chunk sizes.

To conclude, split scheduling policy only considers the factor of load balancing
and fails to consider to scheduling granularity. Therefore, split scheduling policy is
not able to achieve the best performance for applications on CPU+GPU heteroge-
neous architecture.

CPU

GPU

Workload

Timeline

Makespan

C
hunk 1

C
hunk 2

C
hunk 3

Fig. 6.4 Split scheduling policy for heterogeneous parallel architecture

www.manaraa.com

6.2 Prior Solutions 159

6.2.4 FinePar

Besides the above techniques, Zhang et. al [16] proposed FinePar that partitions
irregular workloads between CPU and GPU through irregularity-aware performance
modeling and online-tuning. In this way, FinePar is able to achieve both device-
level and thread-level load balance. In FinePar, Zhang et. al [16] designed a program
transformation to automatically transform the given OpenCL program to enable fine-
grained partitioning; built performancemodels to predict the performance of theCPU
and GPU given any specific fine-grained partitioning; and designed an auto-tuner to
guide the fine-grained workload partitioning for load balancing between the CPU
and GPU.

It is worth noting that FinePar only works for matrix-based applications. In the
following of this section, I will introduce the performance modeling and auto-tuning
techniques in FinePar. The program transformation is not closely related to this work.
If you are interested, you can refer to the original paper of FinePar [16].

6.2.4.1 Performance Modeling

FinePar uses linear regression to build performance models for its low overhead. In
the performance model, features that are closely related with the OpenCL program-
ming model and those that represent irregularity of the workload are selected. More
specifically, four features are selected:

1. The average workload for a work-item (AW). A work-item in OpenCL is similar
to a thread in CUDA.

2. The variance of the distribution of non-zero elements across the rows (VW).
3. The number of work-items in the computation domain (NW).
4. The size of the whole workload (SW).

The targeted sparse matrix applications have irregular memory access pattern,
which affects cache performance and the main memory bandwidth utilization. How-
ever, the memory access pattern is not captured by the linear regression model.
Despite its importance, the memory access pattern depends on the distribution of the
non-zero elements and the interleaved execution of the threads, which is expensive to
profile and hard to model. Hence, to circumvent this problem, the training matrices
are categorized into quasi-diagonal matrices and non-quasi-diagonal ones, which
are referred as Type 1 and Type 2 matrices, respectively. FinePar builds different
performance models for each type.

FinePar quantifies the closeness of the non-zero elements to the diagonal in the
following way. For each row, FinePar counts the number of non-zero elements whose
column is nomore than one eighth of the width of the matrix away from the diagonal.
FinePar divides the total number of non-zero elements in the matrix by the sum of
such numbers for all rows. If the result is larger than the threshold Tdiag, the matrix
is categorized as a Type 1 matrix. Otherwise, it is a Type 2 matrix.

www.manaraa.com

160 6 Load Balancing for Heterogeneous Parallel Architecture

For each type of matrices, FinePar builds a linear regression model for the CPU
and one for the GPU. Given a training matrix or graph, a value is chosen for Tf (the
partitioning threshold) from {16, 32, 64, 128, 256, 512, 1024, 2048} and the matrix
can be partitioned into CPU and GPU workloads. The partitioned workloads on the
CPU and GPU are then executed to collect execution times for the training, which
capture performance degradation due to co-running. Equations6.3 and 6.4 show the
performance models for the GPU and CPU, respectively. The Ci’s (i = 1„ 5) are the
parameters of the model FinePar trains. The graph generator from Graph 500 is used
to generate the training data.

Pg = C1g×AWg+C2g×VWg+C3g× log(NWg)+C4g× log(SWg)+C5g (6.3)

Pc = C1c ×AWc +C2c ×VWc +C3c × log(NWc)+C4c × log(SWc)+C5c (6.4)

6.2.4.2 Applying FinePar Online

Given the input data, the goal of online tuning is to select the threshold for fine-
grained partitioning to achieve the best performance. It consists of two stages: (1)
matrix category detection, and (2) threshold search. The detection stage determines
the matrix category and subsequently the performance models to use. The search
stage leverages the performance models to predict performance given a threshold
and search for the optimal threshold.

When determining the category of the input matrix online, in order to minimize
the overhead, FinePar samples a number of rows from the input matrix and only
counts the non-zero elements close to the diagonal for the sampled rows. For the
quantification to determine the category, FinePar scales down the total number of
non-zero elements according to the sampling ratio.

Threshold search uses the hill climbing algorithm to search for the optimal thresh-
old. FinePar first chooses an initial value for Tf such that the ratio between the
numbers of non-zero elements in the two partitioned workloads matches the ratio
of the peak performance between the CPU and GPU. It then uses the performance
model to estimate the execution time given Tf , (Tf − step), and (Tf + step) as the
threshold, respectively. If Tf produces the optimal performance, the tuning process
terminates. Otherwise, Tf is assigned one of the two other values, which yields better
performance.

According to the above description, we can find that FinePar requires offline
training to achieve good partitioning between CPU and GPU. Furthermore, it is not
applicable for applications that do not use matrix as input. In this following of this
chapter, we introduce a pure online heterogeneous-aware task scheduling policy that
balance the workload across CPU and GPU without any offline training.

www.manaraa.com

6.3 Heterogeneous-Aware Task Scheduling 161

6.3 Heterogeneous-Aware Task Scheduling

In order to balance the workload while minimizing the number of synchroniza-
tion between CPU and GPU, we present the Heterogenoues-Aware Task Scheduling
(HATS) policy in this section.

Figure6.5 shows the heterogeneous-aware task scheduling policy, HATS, for het-
erogeneous architecture. HATS breaks the whole execution into several steps. In the
first step, it executes a small portion of the workload with static partition and col-
lects the execution time like quick scheduling. Instead of partitioning the remaining
workload with the ratio it calculates in the first step, HATS executes the next step
whose size of workload is doubled. In this method, HATS profiles the performance of
GPU for different sizes of workload. HATS continues profiling and doubles the size
of workload in each step. To find the stable point of performance, HATS calculates
the variance of the current and the previous performance ratio in each step. If the
variance is smaller than the threshold, or the remaining workload is smaller than the
workload HATS tries to profile, HATS will stop profiling and execute the remaining
workload. Algorithm 10 shows the policy in peusocode.

Algorithm 10 Heterogeneous-Aware Task Scheduling (HATS)
1: if This is the first step then
2: Take a small portion of the workload and partition with static partition.
3: Record the size of the workload as s
4: else if There is remaining workload then
5: Calculate the performance ratio of the previous execution.
6: Calculate the partition of the current execution according to the performance ratio.
7: Calculate the variance of the two partitions.
8: if The variance is small enough or s ∗ 2 is larger than 1/2 of remaining workload then
9: Partition the remaining workload
10: else
11: s ← s ∗ 2
12: Partition s
13: end if
14: end if

Suppose HATS schedules a program that has 65536 iterations which can be exe-
cuted in parallel on a CPU+GPU heterogeneous system. In the first step, HATS takes
1/128 (this parameter is set statically before execution) of the iterations, which is
512. Then HATS splits these iterations with static partition and allocates them to
CPU and GPU. We assume that the partition ratio is 1:1 in this case. In another
word, HATS assigns 256 iterations to the CPU and 256 iterations to the GPU. HATS
also transfers the required data of these iterations to the GPU before launching GPU
kernel. After the CPU and the GPU finish their work, HATS synchronizes, transfers
the result from the GPU to the CPU and collects the execution times of both devices.
Then it calculates the iterations of each device completes per unit time (second, for
example).

www.manaraa.com

162 6 Load Balancing for Heterogeneous Parallel Architecture

CPU

GPU

Workload

Timeline

Makespan

Profiling Execution

Fig. 6.5 Design of HATS for heterogeneous parallel architecture

In the second step, HATS compares the partition it calculated with the partition
it used in the previous step. It calculates the variance of the two partitions. If the
variance is smaller than the threshold, the performance of GPU is stable enough for
HATS to make a good partition. Then It partitions the remaining workload (65024
iterations) according to it. If not, HATS will use the performance ratio it calculated
in the previous step to partition 1024 (2 ∗ 512) iterations.

HATS keeps profiling until the next step will take more than 1/2 of remaining
iterations. If the next step takes more than 1/2 of remaining iterations, HATS will
simply execute the remaining workload with current partition because it may not be
possible for HATS to find a stable partition without degrading the performance of
GPU. HATS tries to maximize the performance of GPU by assigning a large amount
of workload to GPU.

HATS profiles the performance of GPU in an asymptotic way. HATS tries to find
the stable point of GPU’s performance curve by assigning different sizes of workload
to GPU. In quick scheduling, scheduler assumes that the performance of GPU is a
constant but it is not. HATS keeps profiling until the performance of GPU is stable
to estimate the performance. In every step, HATS adjusts the partition to get closer
to the best partition. When it finds the stable point, it stops profiling and partitions
the remaining workload according to the best partition it can get.

6.4 Comparison of the Scheduling Policies

In previous sections, we introduced four existing task scheduling policies for hetero-
geneous architecture: static scheduling policy, quick scheduling policy, split schedul-
ing policy, and HATS. In this section, we systematically compare the four policies
from three aspects: initial partition, performance prediction, partition method, load
balancing, and synchronization.

Initial Partition. All the four introduced policies adopt static partition in the first
step, since the scheduler has no knowledge about the performance of GPU and CPU
when a brand-new application is submitted. The static scheduling policy partitions

www.manaraa.com

6.4 Comparison of the Scheduling Policies 163

the whole workload into two parts and allocates them to CPU and GPU directly. On
the other hand, the dynamic scheduling policies (i.e., quick scheduling policy, split
scheduling policy and HATS) only partition a small subset of the whole workload in
the first step to avoid performance loss due to the unbalanced workload.

Performance prediction. Static scheduling policy uses the static partition all the
time. Dynamic scheduling policies (Quick scheduling policy, split scheduling policy
and HATS) use the obtained performance of CPU and GPU from the profiling step
to partition future unexecuted workload. During the partitioning, static scheduling
policy and quick scheduling policy assume that the performance ofGPU is consistent,
which is not true according to our experiment in Sect. 6.1. On the contrary, split
scheduling policy and HATS do not have this assumption and calculates the actual
IPC on the CPU and GPU to calculate their performance. To this end, they can better
partition and allocate the workload, thus often perform better than static scheduling
policy and quick scheduling policy.

Partitionmethod. Quick scheduling policy splits thewholeworkload into a small
chunk and a large chunk. It profiles the small chunk and executes the big chunk with
the performance of CPU and GPU collected from the execution of the small chunk.
In the split scheduling policy, the execution of an application is divided into a given
number of sequential steps and the size of the workload executed in each step is the
same. HATS dynamically decides the number of steps. HATS calculates the variance
of partitions to check whether the performance of GPU is stable. If it is stable, HATS
stops profiling and directly allocates the remaining workload to the CPU and GPU.

Load Balancing. In term of load balancing, static scheduling policy often per-
forms the worst, because the workload is allocated without considering the actual
performance of CPU and GPU. Meanwhile, quick scheduling policy is not able to
optimally balance the workload across CPU and GPU. This is mainly because quick
scheduling policy predicts the performance of CPU and GPU according to their per-
formance with small workload. As shown in Fig. 6.1, when the workload is small,
the performance of GPU changes seriously. It is not accurate to predict the perfor-
mance of GPU with large workload using its performance with small workload. To
this end, quick scheduling policy often suffers from sub-optimal load balancing. On
the contrary, HATS increases the size of the workload in each step exponentially to
find the stable point of the curve and adjusts the partition according to the execution
time. Once the partition is stable, HATS can safely execute the remaining workload
and get good load-balance. Similarly, split scheduling policy can also balance the
workload.

Synchronization. In static scheduling policy, CPU and GPU only need to syn-
chronize with each other for one time. In quick scheduling policy, CPU and GPU
synchronize with each other for two times (one after the profiling step, and the other
one after the execution step). In split scheduling policy, the number of synchroniza-
tion is determined by the number of chunks the overall workload is divided. If the
overall workload is divided into m chunks, CPU and GPU synchronize with each
other for m times (one time at the end of each chunk). Compared with the split
scheduling policy, HATS requires CPU and GPU to synchronize with each other for
only a few times because the size of the workload in each step is increased expo-

www.manaraa.com

164 6 Load Balancing for Heterogeneous Parallel Architecture

nentially. The number of synchronizations in split scheduling policy is linear to the
smallest workload while the number of synchronization with HATS is only logarith-
mic to the smallest workload. HATS does not degrade the performance of GPUmuch
because HATS increases the size of the workload assigned to GPU in each step. It
uses a fixed partition only after the performance of GPU goes stable.

6.5 Performance of Dynamic Scheduling Policies

In this section, we compare the performance of the introduced dynamic task schedul-
ing policies for heterogeneous architecture. We omit the performance of static task
scheduling policy, because it is hard to find the appropriate allocation for it.

6.5.1 Experimental Setup

The detailed experiment setups are summarized in Table6.1. In our experiment, we
use six widely-used benchmarks, which are listed in Table6.2, to evaluate the per-
formance of quick scheduling policy, split scheduling policy and HATS. In the 6
benchmarks, cg, jacobi and mm are classic matrix algorithms. nbody is a classic
physics problem that simulates a dynamical system of particles, usually under the
influence of physical forces, such as gravity.mc is the Monte Carlo method for Euro-
pean option pricing and nns is a search algorithm widely used in machine learning.
We choose these benchmarks because they are widely used in emerging scientific
applications that demand high computational ability. Heterogenous architecture that
consists of both CPU and GPU can provide such ability.

In order to evaluate the three scheduling policies, for each benchmark, we imple-
ment three versions: single-thread CPU-only version, GPU-only version, and het-
erogeneous version. The CPU-only version is implemented with C language; the
GPU-only version is implemented with CUDA. In the heterogeneous version, we
implement the quick scheduling policy, split scheduling policy and HATS to man-
age the scheduling. In our implementation, the initial workload for quick scheduling

Table 6.1 Hardware and software specifications

Specifications

CPU Intel Xeon E5620 @ 2.4GHz

GPU Nvidia Tesla M2090 @ 1.3GHz

CPU code compiler GCC 4.6.3

GPU code compiler NVCC 5.0

Operating System Debian Wheezy (Linux 3.2)

www.manaraa.com

6.5 Performance of Dynamic Scheduling Policies 165

Table 6.2 Benchmarks used to evaluate the performance of the scheduling policies.

Benchmark Description Workload

cg Conjugate Gradient method 16Kx16K matrix

jacobi Jacobi method 16Kx16K matrix

mc European Option Pricing 64M iterations

mm Matrix Multiplication Two 1Kx1K matrix

nbody N-Body Simulation 16K bodies

nns Nearest Neighbour Search 16K points with 16K queries

policy and HATS is 1/128 of the whole workload; for split scheduling policy each
chunk has 1024 iterations. These numbers are determined according to the paper that
proposed the techniques.

It is worth noting that, for an application, we report its performance to be the
time used by its accelerated parallel region, including kernel launching overhead,
data transferring time, scheduling overhead and computation time. The time used
for initialization and data preparation is excluded from the execution time, because
they are not affected by the scheduling policy. For a benchmark, we use relative time
(speedup) instead of absolute time (seconds) in our results and the speedup is the
performance normalized with the performance of CPU-only version.

6.5.2 Performance

Figure6.6 shows the performance of quick scheduling policy, split scheduling pol-
icy and HATS for all the benchmarks. Observed from the figure, we can find that
HATS outperforms the quick scheduling policy and split scheduling policy for all the
benchmarks. HATS improves the performance of benchmarks ranging from 1.1 to
86.7% (33.4% on average) compared with quick scheduling policy, and ranging from

Fig. 6.6 Performance of
quick scheduling policy, split
scheduling policy, and HATS

www.manaraa.com

166 6 Load Balancing for Heterogeneous Parallel Architecture

3.6 to 197.3% (42.7% on average) compared with split scheduling policy. In more
detail, Table6.3 summarizes the performance improvement of HATS compared with
quick scheduling and split scheduling.

Besides the improvement over previous scheduling policies, Table6.3 also gives
the percentage of workload used in the profiling step to search the optimal workload
allocation in HATS. HATS adjusts the percentage of workload used in the profiling
step accordingly. Observed from the table, for cg, jacobi, nbody and nns, HATS
profiles 1/4 to 1/3 of the workload but it only profiles 1/50 of mm’s workload.
HATS only profiles when needed rather than profiling the 100% of workload like
split scheduling.

In addition, observed from the table, we can find that HATS performs better when
the profiling step is short. For instance, when the profiling step only processes 3.1%
of the whole workload, HATS improves the performance of the benchmarks up to
197.3% compared with the split scheduling policy. This is because the number of
synchronizations is small in HATS when the profiling step is short. On the contrary,
the number of synchronizations is always large in Split scheduling policy.

From Table6.3 we can also observe that HATS only improve the performance of
mc and mm by 1.1%. After looking into the workload of mc and mm, we find that
the workload of mc and mm is pretty large, and 1/128 of the whole workload used
in the profiling step is already large enough to fully utilize the GPU. In this case,
the performance of GPU in the execution step can be precisely predicted with the
performance information obtained in the profiling step. Therefore, Quick scheduling
policy can efficiently balance the workload across CPU and GPU for mc and mm.
Meanwhile, HATS still performs slightly better than the Quick scheduling policy
because it predicts the performance of GPU more precisely with an extra profiling
step.

Compared with Quick scheduling policy, Split scheduling policy can better bal-
ance the workload. However, the frequent synchronizations and the small workload
chunks degrade the performance of GPU. For instance, mc has 64M iterations and
each workload chunk only has 1024 iterations. In this case, split scheduling policy
splits the overall workload into 64M

1024 = 64K small chunks, and executes these chunks
sequentially. The large number of chunks results in the large number of CPU-GPU

Table 6.3 Improvement over previous scheduling policies

Benchmark Improvement to
Quick(%)

Improvement to
Split(%)

Percent of
Profiling(%)

cg 26.1 3.6 37.9

jacobi 47.6 6.9 26.8

mc 1.1 197.3 3.1

mm 1.1 19.8 3.1

nbody 37.5 7.2 26.8

nns 86.7 21.6 25.0

www.manaraa.com

6.5 Performance of Dynamic Scheduling Policies 167

synchronization, which in turn significantly degrades the performance of the bench-
marks. For other benchmarks that have small workload (e.g., nbody), split scheduling
policy performs much better.

6.5.3 Effectiveness of Balancing Workload

In this subsection, we evaluate the effectiveness of the three dynamic scheduling
policies in balancing workload across CPU and GPU. To measure the effectiveness
in balancing workload, we calculate the imbalance degree of an allocation, denoted
by D, in Eq.6.5. In the equation, Tcpu and Tgpu is the execution time of the allo-
cated workload on CPU and GPU respectively. Obviously, the smaller the imbalance
degree is, the better the workload is balanced across CPU and GPU in heterogeneous
architecture.

D = |Tcpu − Tgpu|
max{Tcpu,Tgpu} (6.5)

Fig. 6.7 shows the imbalance degrees of all the benchmarks when they are scheduled
with Quick scheduling policy, Split scheduling policy, and HATS. Observed from the
figure, Quick scheduling policy always results in the large imbalance degree. This is
mainly because Quick scheduling policy uses the performance of GPU with small
workload to predict its performance with large workload. Since the performance of
GPU is not predicted precisely in Quick scheduling policy, the workload cannot be
perfectly balanced across CPU and GPU. On the contrary, Split scheduling policy
and HATS results in much smaller imbalance degree because they can better predict
the performance of GPU and thus can better balance the workload.

For Quick scheduling policy, the average imbalance degree is about 1/3. This
means that the fast device wastes 1/3 of the execution time on waiting for the strag-
gler device to complete its workload. This result verifies our argument that a small
portion of workload is not enough to estimate the performance of GPUwith different
workload.

Fig. 6.7 Imbalance degree
of the benchmarks when they
are scheduled with Quick
scheduling policy, Split
scheduling policy, and HATS

www.manaraa.com

168 6 Load Balancing for Heterogeneous Parallel Architecture

6.5.4 Effectiveness of Predicting the Performance of GPU

Precisely prediction the performance of GPU is essential for optimally balance the
workload across CPU and GPU in heterogeneous architecture. In this subsection, we
show the effectiveness of predicting the performance of GPU in HATS.

Figure6.8 shows the partition variances of HATS in different profiling steps.
Partition variance is the variance of the partition in one profiling step and the partition
in the previous profiling step. The variance shows the changes of performance of
GPU. If the change is small, the variance will be small. Otherwise the variance will
be large. HATS tries to find the stable point by keeping profiling and calculating the
variance.

The percentage of profiling is related to the threshold. If the threshold is high, the
percentage will be lower, but the load-balance will be worse. If the threshold is low,
the percentage will be higher. We set the threshold to 5∗10−5 but other values can be
used to find a balance point that keeps load-balancewith only a few synchronizations.

If the variance is smaller than the threshold, HATS will stop profiling. The figure
shows that the first profiling step for mm is quite accurate that HATS only needs one
more profiling step to ensure the partition is correct. Others converge to the threshold
quickly and five steps is usually enough for good partition.

6.5.5 Impact of Profiling Granularity

For an application, HATS first profiles it using small workload and increases the
size of workload used in a profiling step exponentially. The start point may affect the
performance of HATS. If HATS starts to profile an applicationwith a small workload,
it avoids the imbalance in the first step. However, starting from small workloadmeans
that HATS requires more steps to reach the stable point. It is not trivial to determine
whether HATS should starts to profile the application with a small workload. To this

Fig. 6.8 Partition variance of HATS in each profiling step (the smaller the better)

www.manaraa.com

6.5 Performance of Dynamic Scheduling Policies 169

Fig. 6.9 Comparison of
different setting of initial
workload

end, in this subsection, we evaluate the performance of HATS with three different
start points: 1/256, 1/128 and 1/64 of the total workload. For ease of description,
they are referred to be HATS-256, HATS-128 and HATS-64 respectively.

Figure6.9 shows the performance of all the benchmarks scheduled by HATS-256,
HATS-128, and HATS-64. Observed from the figure, the three schedulers performs
similar. HATS adapts to different programs without tuning the parameters.

6.6 Summary

Heterogeneous systems with CPU and GPU are becoming popular. It is beneficial to
use all the processors to solve a single task by taking advantages of data-parallelism.
In this chapter, we introduce four widely-used scheduling policies: static scheduling,
quick scheduling, split scheduling, and HATS. Static scheduling policy is not able
to fully balance the workload across CPU and GPU. Quick scheduling partially
improves the load balance, but still suffers from load imbalance. Split scheduling
can efficiently balance the workload, but it incurs severe synchronization overhead.

To solve the problem in existing scheduling policies, in this chapter, we pro-
pose HATS, a novel scheduling policy that efficiently balance the workload across
CPU and GPU while incurs slight synchronization overhead. Our evaluation using
popular scientific benchmarks shows that HATS achieves up to 42.7% performance
improvement on average compared with the state-of-the-art co-scheduling policy.

6.6.1 Chapter Highlights

The following highlights of this chapter could be of your interest:

• We analyze the performance characteristics of GPU and current dynamic co-
scheduling strategies.

www.manaraa.com

170 6 Load Balancing for Heterogeneous Parallel Architecture

• We propose a dynamic scheduling policy based on profiling for splitting and dis-
tributingworkload acrossCPUandGPUwith only a few synchronizations between
CPU and GPU.

• Evaluation results show that HATS achieves up to 42.7% performance improve-
ment on average compared to the state-of-the-art dynamic scheduling policies for
heterogeneous architecture.

References

1. C.Augonnet, S. Thibault, R.Namyst, P.Wacrenier, StarPU:Aunified platform for task schedul-
ing on heterogeneous multicore architectures, Concurrency and Computation: Practice and
Experience 23 (2) (2011) 187–198.

2. S. S. Baghsorkhi, M. Delahaye, S. J. Patel, W. D. Gropp, W.-m. W. Hwu, An adaptive per-
formance modeling tool for GPU architectures, in: Proceedings of the 15th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, PPoPP ’10, ACM, NewYork,
NY, USA, 2010, pp. 105–114.

3. I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, P. Hanrahan, Brook for
GPUs: stream computing on graphics hardware, in: ACM SIGGRAPH 2004 Papers, SIG-
GRAPH ’04, ACM, New York, NY, USA, 2004, pp. 777–786.

4. J. Bueno, L. Martinell, A. Duran, M. Farreras, X. Martorell, R. Badia, E. Ayguade, J. Labarta,
Productive cluster programming with OmpSS, Euro-Par 2011 Parallel Processing (2011) 555–
566.

5. B.He,W.Fang,Q.Luo,N.K.Govindaraju, T.Wang,Mars: amapreduce framework on graphics
processors, in: Proceedings of the 17th international conference on Parallel architectures and
compilation techniques, PACT ’08, ACM, New York, NY, USA, 2008, pp. 260–269.

6. S. Hong, H. Kim, An analytical model for a GPU architecture with memory-level and thread-
level parallelism awareness, in: Proceedings of the 36th annual international symposium on
Computer architecture, ISCA ’09, ACM, New York, NY, USA, 2009, pp. 152–163.

7. S. Hong, H. Kim, An integrated GPU power and performance model, in: Proceedings of the
37th annual international symposium on Computer architecture, ISCA ’10, ACM, New York,
NY, USA, 2010, pp. 280–289.

8. C.-K. Luk, S. Hong, and H. Kim. Qilin: exploiting parallelism on heterogeneous multiproces-
sors with adaptive mapping. In Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, pages 45–55. ACM, 2009.

9. P.McCormick, J. Inman, J. Ahrens, J.Mohd-Yusof, G. Roth, S. Cummins, Scout: a data-parallel
programming language for graphics processors, Parallel Computing 33 (10–11) (2007) 648–
662.

10. A. Munshi, The OpenCL specification version: 1.2 (2011).
11. C. Nvidia, CUDA C programming guide 5.0 (2012).
12. S. Ryoo,C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone,D.B.Kirk,W.-m.W.Hwu,Optimization

principles and application performance evaluation of a multithreaded GPU using CUDA, in:
Proceedings of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel
programming, PPoPP ’08, ACM, New York, NY, USA, 2008, pp. 73–82.

13. T. R. Scogland, B. Rountree,W.-c. Feng, andB. R.De Supinski. Heterogeneous task scheduling
for accelerated openmp. In Parallel &Distributed Processing Symposium (IPDPS), 2012 IEEE
26th International, pages 144–155. IEEE, 2012.

14. Z.Wang, L. Zheng, Q. Chen, andM.Guo. CAP: co-scheduling based on asymptotic profiling in
CPU+GPU hybrid systems. Proceedings of the 2013 International Workshop on Programming
Models and Applications for Multicores and Manycores, pages 107–114. ACM, 2013.

www.manaraa.com

References 171

15. Y. Zhang, J. Owens, A quantitative performance analysis model for GPU architectures, in:
High Performance Computer Architecture (HPCA), 2011 IEEE 17th International Symposium
on, 2011, pp. 382 –393.

16. F. Zhang,B.Wu, J. Zhai, B.He, andW.Chen. Finepar: irregularity-aware fine-grainedworkload
partitioning on integrated architectures. In Proceedings of the 2017 International Symposium
on Code Generation and Optimization, pages 27–38. IEEE Press, 2017.

www.manaraa.com

Chapter 7
MapReduce for Cloud Computing

Abstract Cloud computing and Big data have attracted serious attention from both
researchers and public users. For Cloud computing and Big data, MapReduce is one
of the most widely-used scheduling model that automatically divides a job into a
large amount of fine-grain tasks, distributes the tasks to the computational servers,
and aggregates the partial results from all the tasks to be the final results. It naturally
fits the requirement of processing a large amount of data in parallel. However, the
performance of MapReduce is often seriously damaged by several straggler tasks
that run far slower than other tasks in heterogeneous environments where the servers
have different computational ability. To this end, in this chapter, we discuss the
ways to improve the performance of MapReduce in heterogeneous environments.
Specifically, we propose a Self-Adaptive MapReduce (SAMR) scheduling policy
that can precisely identify the straggler tasks and boot their execution. Experiments
on a real-system heterogeneous cluster prove that the proposed technique can signif-
icantly improve the performance of MapReduce applications without any program
modification.

7.1 Introduction to MapReduce

In Cloud computing and Big data era, in order to provide satisfactory service, many
applications need to process a high volume of data. In order to complete the data
processing in the acceptable time, users prefer to use a large amount of computers
concurrently. This need has promoted the development of MapReduce, which is one
of the most popular programming and scheduling model to process and generate large
data sets [17]. MapReduce enables users to specify a map function that processes a
key/value pair to generate a set of intermediate key/value pairs, and a reduce function
that merges all the intermediate values associated with the same intermediate key

Part of contents in this chapter has been published through The Journal of Supercomputing.
Reprinted from Ref. [9], with permission from Springer. Figures 7.1 and 7.4 in this chapter
have been published through The Journal of Supercomputing. Reprinted from Ref. [9], with
permission from Springer.

© Springer Nature Singapore Pte Ltd. 2017
Q. Chen and M. Guo, Task Scheduling for Multi-core and Parallel Architectures,
https://doi.org/10.1007/978-981-10-6238-4_7

173

www.manaraa.com

174 7 MapReduce for Cloud Computing

[17]. MapReduce is used in Cloud Computing in the beginning [3, 5, 12, 29, 30]. It is
initiated by Google, together with GFS [25] and BigTable [6] comprising backbone
of Google’s Cloud Computing platform. Apart from the Cloud Computing platform,
MapReduce is also ported to work on GPU and multiprocessors. In addition, it is
also extended to solve more loose-coupling problems [10, 11, 13, 14, 26, 28, 32].

For a MapReduce job (i.e., an application that is implemented based on the
MapReduce programming model), its data set is divided into many small data sets.
When a MapReduce system starts to execute a MapReduce job, the MapReduce
scheduler1 in the system launches a map task for each of the small data sets, and
launches a group of reduce tasks to collect the results of all the map tasks. After
the division, the MapReduce scheduler distributes these tasks onto different nodes
according to the location of the tasks’ data sets. In this way, all the nodes (called as
workers) execute the tasks which are assigned to them in parallel. Since every node
needs to execute many tasks, MapReduce scheduler launches a task scheduler for
each node to manage tasks.

7.1.1 Scheduling Policy in MapReduce

The task scheduler can adopt different policies to schedule the tasks. Apache Hadoop
is the most popular programming environment that implements MapReduce. It has
implemented multiple scheduling policies with MapReduce. When multiple jobs are
submitted to Hadoop, by default, Hadoop adopts first-in-first-out (FIFO) policy to
execute the jobs.

FIFO scheduling [4]—In the default FIFO scheduling, all the tasks (including
map tasks and reduce tasks) are submitted to the task slots when they are ready and
the task slots become free. The task slots run the tasks in a first-come-first-serve
manner. One weakness of this scheduling policy is that it is not able to schedule jobs
that have different priorities and is not able to guarantee fair sharing of resources
between concurrent jobs.

Fair scheduling [32]—In order to ensure fair sharing of resources, Facebook
proposed fair scheduling policy. With fair scheduling, each user is assigned a given
amount of cluster capacity over a time. Users are able to assign their jobs to different
job pools, while each pool is allocated a guaranteed minimum number of Map and
Reduce task slots. To achieve this purpose, the fair scheduler provides preemptive
technique, with which the scheduler kills tasks in the job pool running over capacity.

Capacity scheduling [7]—In fair scheduling, the task slots are allocated to dif-
ferent jobs in a static manner. However, in real world scenario, it is possible that a
job cannot fully utilize all the task slots while another concurrent job overloads its
task slots. To solve this problem, capacity scheduling policy is proposed. It provides
capacity guarantees for queues while providing elasticity for queues cluster utiliza-

1A MapReduce scheduler is a scheduler that schedules map and reduce tasks.

www.manaraa.com

7.1 Introduction to MapReduce 175

tion in the sense that unused capacity of a queue can be harnessed by overloaded
queues that have a lot of temporal demand.

Delay scheduling [33]—In the previous scheduling policy, the main purpose is to
ensure fair resource allocation between multiple jobs. The delay scheduling policy
aims to maximize the overall performance of Hadoop platform. In MapReduce, the
data associate with a task could be stored in either remote datanode or local datanode.
It is much faster to read data from local datanode. In order to maximize the chance of
local data access, in delay scheduling, when a node requests a particular task from a
job, if the job is not able to assign local task, the scheduler skip that task and looking
for next jobs. Obviously, delay scheduling policy may incur job starvation. In order
to resolve this problem, proper precaution steps are compulsory required to avoid
starvation effect. The delay scheduling improves problem of locality by asking jobs
to wait for scheduling opportunity on a node with local data.

Besides the above four popular task scheduling policies, researchers have pro-
posed many other policies, such as dynamic priority scheduling, deadline-based
scheduling, and resource-aware scheduling. MapReduce is increasingly popular in
large data set processing. There have been a lot of research works on its adaption
and improvement [13, 26, 28, 32].

7.1.2 Adapting to Other Platforms

MapReduce scheduling has been extended to a great many of platforms, such as
shared-memory multi-core platform, Cell broadband platform, GPU, FPGA and
mobile platform. Phoenix [10] is a MapReduce framework on shared-memory multi-
core architecture. Based on Phoenix, [18, 31] optimized the performance of MapRe-
duce on multi-core platform. MapReduce frameworks [11, 23] are also proposed
for Cell broadband engine architecture. Different from [11, 23] focused on MapRe-
duce on asymmetric Cell-based clusters using a streaming approach while [11] only
implement a MapReduce framework on a single Cell processor. Mars [11] harnesses
the GPU computation power and high memory bandwidth to accelerate MapReduce
frameworks, such as Hadoop. In this case, MapReduce applications are executed on
both CPUs and GPUs. FPMR [27] is proposed for developers to create MapReduce
programs on FPGA. Ref. [13] proposed a MapReduce framework on heterogenous
mobile platform. For shared-memory multi-core, Phoenix [10] is implemented as a
MapReduce framework includes a programming API and an efficient runtime sys-
tem. However, Phoenix only performed well on small-scale systems with uniform
access latencies. For large-scale NUMA systems, [31] optimized Phoenix using a
multi-layered approach that comprises optimizations on the algorithm, implementa-
tion and OS interaction. MATE [18] is another MapReduce implementation extended
from Phoenix which provides a high-level but distinct API.

www.manaraa.com

176 7 MapReduce for Cloud Computing

7.1.3 Variations of MapReduce

Improving the performance of MapReduce has been a popular research issue. Assign-
ing tasks to appropriate nodes is an efficient way to improve the performance of
MapReduce. A lot of efficient MapReduce scheduling algorithms have been pro-
posed to improve the performance of MapReduce in many scenarios. Fischer et al.
[15] proposes an idealized mathematic model to evaluate the cost of task assign-
ments and develops a flow-based algorithm to optimally assign tasks. Polo et al. [22]
proposed an infrastructure aware MapReduce scheduler that monitors the tasks and
evaluates the benefits of running each task on different nodes in real time. Based
on the evaluation, the scheduler can decide the best distribution of tasks on nodes
accordingly. Chen et al. [8] proposed a Tiled-MapReduce scheduling algorithm that
partitions a large MapReduce tasks into a number of small sub-tasks and iteratively
processes one sub-task at a time with efficient use of resources. Zaharia et al. [20]
proposed a fair-sharing algorithm for a multi-user MapReduce system that arrange
system resources (map/reduce task slots) for many users fairly. Zaharia et al. [33]
introduced a delay scheduling algorithm. Aboulnaga et al. [1] proposed a MapRe-
duce scheduling algorithm to minimize the execution time and improve the system
resources utilization. The algorithm defines virtual machines (VM) and allocates the
VMs to jobs, and to physical nodes. Sandholm et al. [24] designed a Dynamic Prior-
ity (DP) parallel task scheduler that allows users to control their allocated capacity
by dynamically adjusting their budgets.

7.1.4 Existing Problem in Heterogeneous Environment

Because a MapReduce job is not completed until all the data is processed, the execu-
tion time of the job is decided by the last finished tasks (i.e., the weakest link effect).
The scheduling policies introduce above work well in homogeneous environment,
because every task can be processed in similar time. In heterogeneous environments,
on the other hand, the execution time of a MapReduce job is seriously damaged
by straggler tasks that run much slower than other tasks. This is mainly because
workers on different nodes require various time in accomplishing even the same
tasks due to their differences, such as capacities of computation and communication,
architectures and memorizes.

One of the most popular solutions of this problem in MapReduce is launching
backup tasks for straggler tasks on fast node. If a MapReduce scheduler launches a
backup task γb for a straggler task γ , the small data set of γ is processed completely
when either γb or γ finishes. In this case, if γb finishes before γ , the execution time
of the job is reduced.

Although current MapReduce schedulers try to launch backup tasks for strag-
gler tasks, they fail to detect straggler tasks correctly due to the wrong-estimated
remaining time of all the tasks [16, 19]. The wrong detected straggler tasks cause

www.manaraa.com

7.1 Introduction to MapReduce 177

at least two problems. First, launching backup tasks for these wrong straggler tasks
cannot improve the performance of the MapReduce job since the real straggler tasks
still prolong the execution time. Second, the backup tasks which are launched for
the wrong straggler tasks waste system resources. The contention on the system
resources even degrades the overall performance of the MapReduce job.

The wasting of system resources is one main problem of the backup strategy.
Currently, MapReduce schedulers classify nodes into fast nodes and slow nodes, so
that backup tasks can be launched on fast nodes. However, slow nodes can be further
classified into map slow nodes and reduce slow nodes in a real system, since it is
very possible that a node processes map tasks fast but processes reduce tasks slow
and vice versa. We use map/reduce slow nodes to represent the nodes that execute
map/reduce tasks slow than most of other nodes. The un-distinguishing between map
slow nodes and reduce slow nodes wastes system resources. Let us take a reduce task
γ that needs a backup task for example. Current MapReduce schedulers will not
launch the backup task on a slow node Ns . However, if Ns is only a map slow node,
launching the backup task of γ on Ns can utilize resources on Ns efficiently and
improve the overall performance, since Ns can process reduce tasks fast.

7.2 Prior Solutions

There are two policies to detect straggler tasks: the least progress policy and the
longest remaining time policy. For example, Hadoop [16] uses the least progress
policy while LATE [19] uses the longest remaining time policy to detect straggler
tasks. Both policies need to estimate the progress of every map/reduce task accu-
rately. ParaTimer [21] is a time-oriented progress indicator for parallel queries that
ensembles of MapReduce jobs. However, the indicator can only estimate the progress
of SQL queries.

7.2.1 Least Progress Policy

As mentioned before, when a node has an empty task slot, Hadoop chooses a task
to execute. It chooses tasks from one of three categories. First, any failed tasks are
given highest priority. This is done to detect when a task fails repeatedly due to a
bug and stop the job. Second, non-running tasks are considered. For maps, tasks with
data local to the node are chosen first. Finally, Hadoop looks for a task to execute
speculatively to speed up the straggler tasks.

In order to select speculative tasks, Hadoop monitors task progress using a
progress score between 0 and 1. For a map task, the progress score is the fraction of
input data read. For a reduce task, the execution is divided into three phases(copy,
sort, and reduce), each of which accounts for 1/3 of the score. In copy phase, the task

www.manaraa.com

178 7 MapReduce for Cloud Computing

fetches map outputs; In sort phase, map outputs are sorted by key; In reduce phase,
a user-defined function is applied to the list of map outputs with each key.

Hadoop looks at the average progress score of each category of tasks (maps and
reduces) to define a threshold for speculative execution: when the progress score of a
task is far less than the average for its category, it is marked as a straggler. Although
a metric like progress rate would make more sense than absolute progress for iden-
tifying stragglers, the threshold in Hadoop works reasonably well in homogenous
environments because tasks tend to start and finish in “waves” at roughly the same
times and speculation only starts when the last wave is running.

However, the least progress policy performs poor in heterogeneous environment.
Because the policy ranks candidates by locality, the wrong tasks may be chosen for
speculation first. For example, if the average progress was 80% and there was a 2x
slower task at 40% progress and a 10x slower task at 8% progress, then the 2x slower
task might be speculated before the 10x slower task if its input data was available on
an idle node.

7.2.2 Longest Approximate Time to End Policy

In order to solve the above problem, Longest Approximate Time to End (LATE)
policy [19] is proposed. In LATE policy, the task that will finish farthest into the future
is speculatively executed first, because this task provides the greatest opportunity for
a speculative copy to overtake the original and reduce the job’s response time.

In the policy, for each task, its progress rate (denoted by R) and its remain time
to completion (denoted by T T E) are calculated in Eq. 7.1, where T is the amount of
time the task has been running for and PS is the progress score of the task (collected
int the same way as the least progress policy).

R = PS

T
, T T E = 1 − PS

R
(7.1)

The above calculation assumes that tasks make progress at a roughly constant rate.
To really get the best chance of beating the original task with the speculative task, the
policy only launch speculative tasks on fast nodes—not stragglers. To achieve this
purpose, the scheduler does not launch speculative tasks on nodes that are below some
threshold, SlowNodeThreshold, of total work performed (sum of progress scores
for all succeeded and in-progress tasks on the node). This heuristic leads to better
performance than assigning a speculative task to the first available node.

To handle the fact that speculative tasks cost resources, a threshold Speculative-
Cap is given to limit the number of speculative tasks that can be running at once.
Furthermore, a threshold SlowTaskThreshold that a task’s progress rate is compared
with to determine whether it is “slow enough” to be speculated upon. This prevents
needless speculation when only fast tasks are running.

www.manaraa.com

7.2 Prior Solutions 179

In summary, the LATE policy works as follows. If a node asks for a new task and
there are fewer than SpeculativeCap speculative tasks running:

• Ignore the request if the node’s total progress is below SlowNodeThreshold.
• Rank running tasks that are not currently being speculated by estimated time left.
• Launch a copy of the highest-ranked task with progress rate below SlowTask-
Threshold.

7.2.3 Calculating Progress Score

Both the least progress policy and the LATE policy monitor the progress of every
task using progress score (ranges from 0 to 1). In current MapReduce system, the
execution of a map task comprises two phases and the execution of a reduce task
comprises three phases as shown in Fig. 7.1. Therefore, the progress score of a task
comprises from the progress score of every phase. Current MapReduce schedulers,
such as Hadoop’s scheduler and LATE, assume that M1, M2, R1, R2 and R3 are 1,
0, 1/3, 1/3 and 1/3 respectively.

By accumulating the progress score of different phases, the progress of a task can
be calculated. The basis of calculating the progress score of a task is calculating the
progress of a phase. The progress of a phase, denoted by PSphase, can be calculated in
Eq. 7.2. In the equation, M is the number of key/value pairs that have been processed
in the phase and N is the overall number of key/value pairs that needed to be processed
in the phase.

PSphase = M

N
(7.2)

Let me introduce how to calculate the progress score of a task in more detail in
the existing two policies. Take a task γ for example. If γ is a map task, since the first
phase occupies the overall progress score, the progress score of γ is the progress
M1. If γ is a reduce task and the first K phases of γ has finished, since each phase
occupies 1/3 of the progress score, PSγ is calculated by adding the progress score
of the finished phases and the progress score of the current phase. Therefore the
progress score of γ , denoted by PSγ , is calculated in Eq. 7.3.

(a) Map Task (b) Reduce Task

R1 R2 R3M1 M2

100%

Copy data Order data Merge dataExecute map
function

Reorder
intermediate data

100%

Fig. 7.1 Two phases of a map task and three phases of a reduce task

www.manaraa.com

180 7 MapReduce for Cloud Computing

PSγ =
{
PSphase γ is a map task,
1
3 × K + 1

3 × PSphase K ∈ (0, 1, 2), γ is a reduce task.
(7.3)

For a MapReduce system with n running tasks (γ1, γ2 ... γn), the average progress
score of the n running tasks, denoted by PSavg , is calculated in Eq. 7.4.

PSavg =
n∑

i=1

PSi
n

(7.4)

Suppose task γ j ’s progress score is PSj and it has run Tj seconds (j ∈
(1, 2, ..., n)). If the least progress policy is used to detect straggler tasks, γ j is a
straggler task only when PSj ≤ PSavg − 20%.

On the other hand, if the LATE policy is used, the remaining time of all the n
tasks needs to be calculated further. Then the scheduler chooses the tasks with the
longest remaining time as straggler tasks. To calculate the remaining time of task
γ j , the progress rate of γ j , denoted by PR j , is calculated first in Eq. 7.5. Based on
Eq. 7.5, the remaining time of γ j , denoted by T T E j , is calculated Eq. 7.6.

PR j = PSj

T
(7.5)

T T E j = 1.0 − PSj

PR j
= T × 1.0 − PSj

PSj
(7.6)

7.2.4 Problems in Existing Solutions

In most cases, LATE policy works better than the least progress policy [19]. This
is because the task with a small progress score does not always complete later than
the task with a high progress score, especially in heterogeneous environment. For
example, in a MapReduce system that has six tasks (γ1, γ2, ..., γ6), suppose their
progress scores are 0.7, 0.5, 0.9, 0.9, 0.9 and 0.9 respectively. We further suppose
that they need 100, 30, 10, 10, 10 and 10 s to finish their work. In this case, PSavg =
(0.7+0.5+0.9∗4)/6 = 0.8. The least progress policy classifies γ2 to be a straggler
task. However, γ1 is the real straggler task since γ1 needs more time to finish its work.

If MapReduce scheduler can accurately predict the real progress of each task,
leveraging LATE policy, we can identify real straggler tasks. However, emerging
MapReduce schedulers fail to calculate the progress score accurately. While M1,
M2, R1, R2 and R3 vary across hardware settings and MapReduce applications in
real system execution, they are constantly set to be 1, 0, 1/3, 1/3 and 1/3 respectively
in emerging MapReduce schedulers.

Let me take a node with R1 = 0.6, R2 = 0.2 and R3 = 0.2 as an example to
explain the poor progress prediction in emerging MapReduce schedulers. Suppose

www.manaraa.com

7.2 Prior Solutions 181

a reduce task γ has completed the first phase and has run T seconds on the node,
the remaining time of γ is T ∗ 1−0.6

0.6 = 0.67T s. However, because R1, R2 and R3
are constantly seted to be 1/3 in emerging MapReduce schedulers, the calculated
remaining time of γ is T ∗ 1−1/3

1/3 = 2T s. Based on the wrong remaining time of
each task, LATE policy is not able to correctly identify real straggler tasks.

To this end, we propose a Self-Adaptive MapReduce (SAMR) scheduler that
adjusts M1, M2, R1, R2 and R3 based on the historical values of them in the
completed tasks. Based on the specific values of them for the current hardware
features and application features, SAMR can estimate the progress scores of running
tasks accurately, and hence can find real straggler tasks.

7.2.5 Tarazu

The above techniques try to identify straggler tasks and speed up their execution, so
that improve the whole performance of an MapReduce application. Besides strag-
gler tasks, there are two more key factors may result in the poor performance of an
application: (1) MapReduce’s built-in load balancing of Map computation results in
excessive network communication and (2) the heterogeneity amplifies the load imbal-
ance in Reduce computation. These factors extend beyond the issues of stragglers
and speculative execution, which is the main part of this chapter.

In order to solve the above two pain points in MapReduce, Ahmad et al. [2]
proposed Tarazu, an improved MapReduce scheduler, to optimize the performance
of MapReduce on heterogeneous clusters. Tarazu consists of a Communication-
Aware Load Balancing of Map computation (CALB) policy that regulates the use of
remote Map tasks based on whether Map or Shuffle is likely to be in the critical path,
a Communication-Aware Scheduling of Map computation (CAS) policy that spread
out remote map task traffic over time, and a Predictive Load Balancing of Reduce
computation (PLB) policy that balances reduce tasks across heterogeneous nodes.
Figure 7.2 shows the general overview of the three policies.

7.2.5.1 Communication-Aware Load Balancing of Map (CALB)

CALB is designed based on the key observation that due to the overlap between Map
computation and Shuffle, either the Shuffle or the Map computation is in the critical
path, depending upon the MapReductions Shuffle load and the cluster hardware
characteristics.

If the Shuffle is critical, CALB switches to no-steal mode where CALB prevents
task stealing for most of the Map phase, preventing further aggravation of the Shuffle
traffic and increasing the chances of tasks being executed locally. When the Shuf-
fle traffic falls below a threshold, CALB allows task stealing to load-balance any
remaining tasks (naturally, faster nodes steal work from slower nodes). Intuitively, in
this case, for most of the Map phase, fast nodes do not steal tasks, allowing the slow

www.manaraa.com

182 7 MapReduce for Cloud Computing

CALB CAS PLB

Shuffle or Map
critical?

No-Steal
Mode

Task-Steal
Mode
(CAS)

Shuffle
critical

Map
critical

Compute processing rates
for different node types
(used by CAS & PLB)

Interleave local and remote
tasks based on compute

ratios

Compute Reduce skew

processing rates

Create Reduce tasks with
skewed key distribution

Fig. 7.2 The general overview of the CALB, CAS, and PLB policies in Tarazu [2]

nodes to run the Map tasks locally. At the end of the Map phase when the Shuffle
ends, fast nodes steal a few tasks from remote slow nodes.

On the other hand, if the Map computation is critical, CALB continues in the
task-steal mode. The number of remote tasks needed and when to schedule them will
be handled in CAS, which is discussed later. In the Map phase, fast nodes steal tasks
from slow nodes. CALB hides the resultant fast nodes remote task traffic under the
slow nodes computation. By load-balancing Map computation, CALB shortens the
critical path in this case.

In order to identify whether the Shuffle or the Map computation is critical, Ahmad
et al. [2] believed that shuffle is critical when Map tasks complete their computation
at a faster rate than their communication to Reduce tasks. Therefore, CALB Lever-
ages the number of Map tasks that have completed their computation (Computedi)
and the number that have completed their communication (Communicatedi) for
each node i to identify the critical phase. In this case, suppose there are overall N
nodes, | ∑N

i=1 Computedi − ∑N
i=1 Communicatedi | indicates the extent to which

the Shuffle lags the Map computation. If it increases over time, it implies that the
Shuffle is likely to be critical.

7.2.5.2 Communication-Aware Scheduling of Map (CAS)

While CALB decides whether to allow remote task stealing would be beneficial for
an MapReduce application, CAS determines how many remote tasks are needed and
when to execute them in the task-steal mode.

In emerging MapReduce implementation, tasks are stolen across nodes at the end
of the Map phase, creating a surge of traffic that may results in poor performance.
In order to avoid this problem, CAS spreads out the task stealing across nodes (dur-
ing initial part of the Map phase, and in CALBs task-steal mode) by interleaving
them with local task execution. In addition to avoiding the bursty traffic, CAS has
other benefits: (1) By interleaving remote tasks with local tasks in the Map phase,
CAS achieves better overlap between remote task communication and local task

www.manaraa.com

7.2 Prior Solutions 183

computation on both fast nodes and slow nodes. (2) The remote tasks read input

data faster by avoiding bursts. These benefits shorten Map computation, which is the
critical path relevant for CAS.

As described before, CAS is designed to steal remote tasks throughout the Map
phase when the overall number of remote tasks is not known. In order to fulfill this
requirement, Tarazu measures the average execution time of map task for each node
type in the heterogeneous cluster and compute the ratios of the execution time for
each pair of node types as in Eq. 7.7. In the equation, Ti is the time of a map task on
a faster node of type i and Tj is the time of a map task on a slower node of type j .

mapRatioi, j = Tj

Ti
(7.7)

CAS uses these ratios to determine the number of remote tasks to be moved from
one node to another. The larger the ratio mapRatioi, j is, the more remote tasks are
allowed to be stolen from node of type j to node of type i . Because current MapRe-
duce implementations already track the identity of the pair of source and destination
nodes involved in task stealing, CAS can apply the specific pair’s mapRatio.

7.2.5.3 Predictive Load Balancing of Reduce (PLB)

While CALB and CAS optimize the Map phase, PLB achieves better load balance
in the Reduce phase by skewing the intermediate key distribution among the Reduce
tasks based on the type of the node on which a Reduce task runs. While current
implementations create as many bins per Map task as there are Reduce tasks, PLB
creates more hash bins (by a factor of binMultiplier) as the number of Reduce tasks
to achieve the skew (e.g., binMultiplier = 4). PLB uniformly distributes keys to the
bins and then assigns as many bins to each Reduce task on node i as is dictated by
the skew factor, reduceSkewFactori . For instance, if a fast node is three times as
fast as a slow node, then reduceSkewFactori for the fast node is 3 and that for the
slow node is 1. Therefore, a Reduce task on a fast node gets three times as many bins
as a Reduce task on a slow node.

To implement assigning multiple bins per Reduce task, Ahmad et al. [2] modified
the MapReduce implementation to allow multiple sends from a Map task to a Reduce
task (the baseline implementation assigns and sends only one bin from a Map task to
a Reduce task). Note that although more hash bins per Map task are created in Tarazu
than the baseline, applications have the same number of Reduce tasks in Tarazu as
the baseline.

By integrating CALB, CAS and PLB together in Tarazu, the workload can be bal-
anced across the nodes in heterogeneous clusters while reducing the burst network
traffic. While Tarazu improves the performance of MapReduce on heterogeneous
clusters by balancing the workloads, we further introduce the other categories of

www.manaraa.com

184 7 MapReduce for Cloud Computing

techniques: accelerating straggler tasks. Tarazu is orthogonal to the techniques intro-
duced in the following of this chapter. They are able to be integrated to achieve better
performance.

7.3 Self-adaptive MapReduce Scheduling

This section presents SAMR, a Self-Adaptive MapReduce scheduler. In this section,
we first overview the design of SAMR. Then, we present the historical-based strategy
that tunes runtime parameters used by SAMR automatically. After that, we present the
detailed algorithms for detecting straggler tasks, detecting slow nodes, and selecting
appropriate backup node for straggler tasks.

7.3.1 Overview of SAMR

Fig. 7.3 presents the design overview of our self-adaptive MapReduce scheduler,
SAMR. As shown in the figure, SAMR monitors the progress of all the active tasks.
Based on the progress of each task, SAMR identifies straggler tasks and boosts the
execution of straggler tasks through launching a backup task for each straggler task
on a fast node.

In more detail, SAMR executes a MapReduce job in the following ways. First,
when SAMR receives a MapReduce job W , SAMR identifies the category of W . If
W is an instance of application P , every worker reads in the M1, M2, R1, R2 and
R3 when executing application P from its local node. During the execution of W , the
values of M1, M2, R1, R2 and R3 on each node are tuned dynamically according
to their actual values. Second, based on the dynamic-tuned M1, M2, R1, R2 and
R3, SAMR can compute progress scores of tasks more accurate, which is the basis
of straggler task detecting. Meanwhile, SAMR detects slow nodes according to the

Store M1, M2,
R1, R2, R3

Initialize
M1, M2, R1,

R2, R3

Tune M1, M2, R1, R2, R3

Monitor Task Progress

Identify Straggler Tasks Identify Slow Nodes

Boost Straggler Tasks

Start Job Run Job Terminate Job

Fig. 7.3 Design of SAMR

www.manaraa.com

7.3 Self-adaptive MapReduce Scheduling 185

average progress rates of map tasks and reduce tasks on every node (to be described
shortly). When a straggler task t is detected, SAMR launches a backup task for it.
After all the data sets have been processed, SAMR terminates the MapReduce job
and reports the final result. Lastly, every node stores the updated M1, M2, R1, R2
and R3 for application P , so that future instance of P can benefit from the accurate
historical information.

7.3.2 Tuning Phase Weights

In heterogeneous Cloud platform, workers on different nodes operate at various
speeds. It is not accurate to use the same phase weight configuration (i.e., M1, M2,
R1, R2 and R3) for all the workers. To this end, SAMR tunes the weights of every
phase in map task and reduce task on each individual node using a history-based
auto-tuning strategy. In this strategy, a worker p reads in the historical weights of
M1, M2, R1, R2 and R3 from the corresponding node to be its default weight
configuration when the worker was started. Once the worker p completes a map
task, its M1 and M2 are updated. Similarly, once p completes a reduce task, R1, R2
and R3 are updated. In this way, each worker has its own phase weight configuration
that reflects the actual task processing character on the corresponding node.

In more detail, SAMR tunes the weight of each phase (M1, M2, R1, R1 and R3)
as follows. Suppose the current weight of a phase is Vold , and the actual weight of the
phase in a newly-completed task is Vcmpl . The new weight of the phase, denoted by
Vnew, is calculated in Eq. 7.8, in which HP shows how badly the history information
impacts Vnew.

Vnew = Vold × HP + Vcmpl × (1 − HP) (7.8)

Observed from Eq. 7.8, if HP is too large (close to 1), Vnew highly depends on
Vold . In this case, Vnew is not able to capture the up-to-date features of the current
running tasks. On the other hand, if HP is too small (close to 0), the appropriate
value of the weight may be destroyed by random factors, since Vcmpl is likely to be
influenced by random events.

It is worth noting that there is not any additional communication when a worker
reads and updates historical information, since every worker reads and writes histor-
ical information from local node. Therefore, SAMR is scalable.

7.3.3 Calculating Progress Score

Based on the timely-undated weight of each phase, SAMR is able to calculate the
progress score of each task precisely. When SAMR executes a MapReduce job, it
computes the progress score of every active task periodically (e.g., every 100 ms).
Take an active task γ for example. Suppose the worker has processed K phases of

www.manaraa.com

186 7 MapReduce for Cloud Computing

γ . Equations 7.9 and 7.10 compute the progress score of γ when it is a map task or a
reduce task, respectively. In the two equations, PSphase is the progress score of the
current phase and can be computed in Eq. 7.2.

For map task: PSγ =
{
M1 × PSphase if K = 0,

M1 + M2 × PSphase if K = 1.
(7.9)

For reduce task: PSγ =

⎧⎪⎨
⎪⎩
R1 × PSphase if K = 0,

R1 + R2 × PSphase if K = 1,

R1 + R2 + R3 × PSphase if K = 2.

(7.10)

7.3.4 Identifying Straggler Task

Based on the accurate progress score of every active task, SAMR is able to identify
the real straggler tasks that may seriously damage the job’s performance. In our
design, a task γ is considered to be a straggler task only when both of the following
two constraints are satisfied.

• Its data processing speed is much slower than other tasks’ data processing speed.
• It is one of the tasks with the longest remaining time.

If the first constraint is not satisfied, even if the task γ has the longest remaining
time, it should be be treated as a straggler task. For instance, if γ is a newly launched
task on a fast node, it is quite possible that γ has the longest remaining time although
the data processing rate of γ is fast. In this case, there is no benefit to launch a backup
task for γ because the backup task is not able to complete before γ , and it should
not be treated as a straggler task. Otherwise, if only the first constraint is satisfied
but the second constraint is not satisfied, task γ is not the task that would complete
lastly. In this case, it is not necessary to launch a backup task for γ .

In order to identify whether task γ is a slow task, we compare the data processing
rate of γ with the average data processing rate of the same type of tasks in the whole
job. Let PSγ and PSavg represent the data progressing rate of γ and the average data
progressing rate of the job. Only when γ ’s data progressing rate PSγ fulfills Eq. 7.11,
it is considered to be a slow task. In the equation, Task_Cap is the threshold that
identifies slow tasks.

PRγ < (1.0 − Task_Cap) × PRavg (7.11)

Observed from Eq. 7.11, if Task_Cap is too small (close to 0), SAMR will classify
some fast tasks into slow tasks. On the other hand, if Task_Cap is too large (close to
1), SAMR will classify some slow tasks into fast tasks. In the evaluation section, we
show the performance of SAMR with different Task_Cap.

www.manaraa.com

7.3 Self-adaptive MapReduce Scheduling 187

After all the current slow tasks are identified, SAMR computes the remaining
time to complete of each of the slow tasks using Eq. 7.6. SAMR chooses the slow
tasks with the longest remaining time to be the straggler tasks adopting the LATE
policy.

Furthermore, in order to handle the fact that backup tasks of straggler tasks cost
resources, SAMR limits the number of straggler tasks. Therefore, a cap on the number
of straggler tasks (i.e., the number of backup tasks since SAMR only allows one
backup task for each straggler task), denoted by Strag_Cap, is used. Suppose the
number of the overall running tasks is Task_Num, the up-bound of the number of
straggler tasks, denoted by Strag_UB, is Strag_Cap × Task_Num. If Strag_Cap
is too small (close to 0), some real straggler tasks is overlooked by SAMR. On the
contrary, if Strag_Cap is too large (close to 1), too many tasks could be identified
to be straggler tasks. The backup tasks for these straggler tasks cost a lot of system
resources and may degrade the overall performance in consequence. Algorithm 11
gives the algorithm of detecting straggler tasks in SAMR.

Algorithm 11 Straggler tasks detecting algorithm
1: DetectStragglerTask() {
2: While (the job is running) {
3: Every worker computes the progress rate of every active tasks on it ;
4: SAMR computes the average progress rate of all the running tasks ;
5: Every worker identifies slow tasks according to Eq. 7.11 ;
6: Every worker reports the list of its slow active tasks ;
7: Computes the remaining time for all the slow tasks according to Eq. 7.6;
8: Sorts the slow tasks in the descending order of their remaining time ;
9: Calculate the cap of the number of straggler tasks, Strag_UB ;
10: If (the number of slow tasks ≤ Strag_UB)
11: All the slow tasks are considered to be straggler tasks ;
12: else
13: Strag_UB slow tasks with the longest remaining time as straggler tasks ;
14: Inserts all the straggler tasks into straggler map/reduce task list ;
15: usleep(100000) ; //SAMR detects straggler tasks every 100 ms
16: }
17: }

7.3.5 Identifying Slow Node

In heterogenous environments, different nodes have different CPU, memories and
I/O devices. The difference leads to different rate in executing map tasks and reduce
tasks. During the execution of a MapReduce job, if SAMR launches a backup task for
a straggler task on a slow node, there is not any performance improvement since the
backup task will be finished even later than the original straggler task on a slow node.
To improve performance and decrease response time of a job, SAMR does not launch
backup tasks on slow nodes. However, it is also possible that some nodes execute
map tasks slow but execute reduce tasks fast. To increase the resource utilization

www.manaraa.com

188 7 MapReduce for Cloud Computing

while ensuring the performance, SAMR classifies slow nodes into map slow nodes
and reduce slow nodes further. The backup tasks of straggler map tasks can also be
launched on reduce slow nodes besides fast nodes and vice versa.

To detect slow nodes in the system, SAMR uses the average progress rate of
the running map/reduce tasks on a node to represent the map/reduce task progress
rates of the node. The nodes with the smallest map/reduce task progress rate are
map/reduce slow nodes. Given a node Φ with M map tasks and R reduce tasks. The
map/reduce task progress rates of Φ, denoted by MRΦ and RRΦ , are calculated in
Eq. 7.12, where PRi is the progress rate of the i th map/reduce task.

{
MRΦ = ∑M

i=1 PRi/M,

RRΦ = ∑R
i=1 PRi/R.

(7.12)

For node Φ, if MRΦ < (1 − Node_Cap) × MRavg , it is a map slow node. If
RRΦ < (1 − Node_Cap) × RRavg , it is a reduce slow node. MRavg and RRavg

are the average map/reduce tasks progress rate of all the nodes. Node_Cap is the
threshold that identifies slow nodes.

Therefore, if Node_Cap is too small (close to 0), SAMR will classify some fast
nodes into slow nodes. On the other hand, if Node_Cap is too large (close to 1),
SAMR will classify some slow nodes into fast nodes.

To limit the number of slow nodes, a cap on the number of slow nodes, denoted
by SN_Cap, is introduced in SAMR. Suppose the number of the overall node is
Node_Num. The up-bound of the number of slow map/reduce nodes is SN_Cap×
Node_Num.

7.3.6 Boosting Straggler Task

Launching backup tasks for straggler tasks is one of the most popular method to
boost the straggler tasks and improve the performance of a MapReduce job. Since
SAMR is able to identify straggler tasks and map/reduce slow nodes accurately in
a timely manner, SAMR can simply launch backup tasks for straggler tasks. When
a node Φ is free, it first tries to obtain a new task that never been executed before.
If there is not any new task, Φ checks whether it is a map or reduce slow node. If
Φ is not a map slow node, Φ launches a backup task for a straggler map task. If
Φ is not a reduce slow node, Φ launches a backup task for a straggler reduce task.
Algorithm 12 shows the detailed algorithm used to obtain a new task when node Φ

is free.
In addition, SAMR also limits the number of backup tasks since backup tasks

cost system resources. As mentioned in Sect. 7.3.4, the up-bound of the number of
backup tasks is Strag_Cap × Task_Num.

www.manaraa.com

7.4 Implementation of SAMR 189

Algorithm 12 Algorithm used to obtain a new task by node Φ

1: While (the job is still running) {
2: Φ tries to get a new task that never been executed by other nodes before ;
3: If (succeed)
4: Φ starts to execute the obtained task ;
5: Else {
6: Φ checks whether it is a map/reduce slow node ;
7: If (Φ is not a map slow node) {
8: Φ tries to pop a straggler map task from the straggler map task list ;
9: Φ launches a backup task for the straggler map task ;
10: }
11: If (Φ is not a reduce slow node) {
12: Φ tries to pop a straggler reduce task from the straggler reduce task list ;
13: Φ launches a backup task for the straggler reduce task ;
14: }
15: }
16: }

7.4 Implementation of SAMR

Figure 7.4 shows the general architecture of the proposed SAMR scheduler. As shown
in the figure, SAMR uses straggler map task pool and straggler reduce task pool to
record straggler map tasks and straggler reduce tasks respectively. When a node tries
to launch a backup task for either a straggler map task or a straggler reduce task, the
straggler task with the longest remaining time is popped out from the corresponding
task pool. In this way, SAMR always launches backup task for the straggler task
which prolongs the execution time most serious first.

In SAMR, every node records the weights of every phase in a map task and a
reduce task (i.e., M1, M2, R1, R2 and R3) for every history application, which
partly reflect the execution features of tasks on the node. The weights can be stored
in various formats, e.g., XML or Jason Format. For easy maintaining, in our current
implementation, SAMR stores the weights in XML format, as shown in Fig. 7.5.
When a job is submitted, SAMR first identifies it is an instance of which application.
After that, every node uses an XML parser to search for the stored M1, M2, R1,
R2 and R3 for the application. If they are found, the XML parser read in the stored
weights and takes them as the default values of M1, M2, R1, R2 and R3 in the
current execution. Otherwise, M1, M2, R1, R2 and R3 are configured to be 1, 0,
1/3, 1/3, 1/3 by default respectively. They will be tuned to according to the statistics
collected at runtime.

In SAMR, all the nodes prefer executing unprocessed tasks from the unprocessed
task pool rather than launching backup tasks. Due to the large data set of tasks, all
the nodes prefer to execute tasks whose data set is stored on local node.

www.manaraa.com

190 7 MapReduce for Cloud Computing

Fig. 7.4 Architecture of SAMR. Nodes can obtain tasks from both the unprocessed task pool and
the straggler task pool. The unprocessed task pool stores all the unprocessed tasks. Straggler map
task pool and straggler reduce task pool store the straggler map and reduce tasks. The filled squares
are map/reduce slow nodes, and the filled cycles are either slow map tasks or slow reduce tasks
respectively

Fig. 7.5 An example of M1, M2, R1, R2 and R3 that are recorded in XML format

7.5 Performance Evaluation

In this section, we compare the performance of emerging techniques used to boost
straggler tasks in MapReduce job.

7.5.1 Experimental Setup

In the experiment, we use a small cluster that consists of five identical personal
desktops. To build heterogenous environment, we have installed different number of

www.manaraa.com

7.5 Performance Evaluation 191

Table 7.1 Hardware configuration

VMs per physic
machine

Num of physic
machines

Data write rate (MB/s)

Fast setting 1 2 2.87

2 3 1.4

Bare linux 1 3.43

Slow setting 1 1 2.87

2 2 1.4

2 1 slow machine 1.34

Bare linux 1 3.43

virtual machines on the five homogenous physical machines. Each virtual machine
has 1GB RAM and runs Linux 2.6.24. We compare SAMR with the default Hadoop
scheduler and LATE [19], the state-of-the-art technique used to boost straggler tasks.
For fairness of comparison, we implement both SAMR and LATE schedulers on
Hadoop 0.19.1.

In order to evaluate the performance of Hadoop, LATE and SAMR in various
hardware scenarios, as shown in Table 7.1, we simulate two heterogenous environ-
ments. Note that, we run a CPU-intensive program on one of the computers that have
two virtual machines to simulate two extremely slow nodes in the slow setting. We
choose two classic benchmarks, Sort and WordCount, to evaluate the performance
of Hadoop, LATE and SAMR. For each test, every benchmark is run ten times and
the average execution time is used as the result.

7.5.2 Performance

Because the slow setting in Table 7.1 provides more heterogeneity, in this section
we report the performance of Hadoop, LATE and SAMR by evaluating them on the
experimental platform with the slow setting. Experiments on the fast setting show
similar results.

Figure 7.6 shows the performance of Sort and WordCount in SAMR, Hadoop
and LATE scheduler. Observed from the figure, compared with Hadoop, SAMR
significantly improves the performance of Sort andWordCount, with the performance
gain up to 37% for Sort and up to 16% for WordCount. On the other hand, LATE can
also slightly improve the performance of Sort and WordCount, with the performance
gain up to 9% for Sort and up to 10.1% for WordCount. In this experiment, the
performance results of SAMR are collected with the best configured parameters
(i.e., HP, Task_Cap, Node_Cap, SN_Cap and Strag_Cap). We will describe the way
to choose their appropriate values shortly.

www.manaraa.com

192 7 MapReduce for Cloud Computing

Fig. 7.6 Performance of
Sort and WordCount with the
slow setting when they are
scheduled with Hadoop,
LATE and SAMR

(a) Sort

(b) WordCount

As shown in Fig. 4.12, both Sort and WordCount achieve a slightly better per-
formance in LATE compared with Hadoop. The performance gains origin from the
longest approximate time to end strategy in launching backup tasks [19]. Because
SAMR is able to estimate the progress of tasks accurately, it can detect straggler
tasks more accurate. Therefore, Sort and WordCount achieve better performance in
SAMR compared with LATE.

7.5.3 Effectiveness of Speculative Execution and Weight
Tuning

As mentioned before, emerging MapReduce schedulers employ speculative execu-
tion, with which the scheduler launches backup tasks for straggler tasks. In addition,
SAMR tunes the weights of M1, M2, R1, R2 and R3 dynamically.

In order to evaluate the effectiveness of speculative execution and the weight
tuning technique in SAMR, we compare the performance of the benchmarks when
they are scheduled by the default Hadoop, Hadoop-ns (Hadoop without speculative
execution) and Hadoop-wt (Hadoop with weight turning) on both the fast setting
and the slow setting. Figure 7.7 shows the performance of Sort scheduled by the
three schedulers on the two settings respectively. Experiment on WordCount shows
similar results. From the figure we can see that the speculative execution is able to

http://dx.doi.org/10.1007/978-981-10-6238-4_4

www.manaraa.com

7.5 Performance Evaluation 193

Fig. 7.7 Execution time of
Sort on the slow setting and
the fast setting when it is
scheduled with Hadoop,
Hadoop-ns, and Hadoop-wt

(a) Slow setting

(b) Fast setting
n

significantly improve the performance of MapReduce applications while enhancing
the stability of execution time.

To demonstrate the effectiveness of the weight tuning technique proposed in
SAMR, Table 7.2 lists the recorded values and the real values of M1, M2, R1,
R2 and R3 on every node. Observed from the table, for map tasks, the difference
between real values and the recorded values are less than 5%. On the other hand,
for reduce tasks, in most cases, the difference between real values and the recorded
value are less than 10%. Both the recorded values and the real values are far from the
constant values of them employed in Hadoop’s scheduler and LATE scheduler (i.e.,
1, 0, 1

3 , 1
3 and 1

3). Based on the accurate weights of different phases, SAMR is able
to detect the actual straggler tasks. Therefore, SAMR can improve the performance
of MapReduce applications in heterogeneous environments.

7.5.4 Parameter Selection in SAMR

SAMR uses five parameters (i.e., HP, Task_Cap, Node_Cap, SN_Cap and Strag_Cap)
to configure the scheduler for different hardware architecture and different

www.manaraa.com

194 7 MapReduce for Cloud Computing

Table 7.2 The recorded/real values of M1, M2, R1, R2 and R3.

Map task Reduce task

M1 M2 R1 R2 R3

Node1 0.8/0.78 0.2/0.22 0.59/0.62 0.19/0.23 0.22/0.15

Node2 0.77/0.77 0.23/0.23 0.46/0.42 0.06/0.03 0.48/0.55

Node3 0.75/0.66 0.25/0.34 0.44/0.40 0.43/0.45 0.24/0.15

Node4 0.74/0.77 0.26/0.23 0.62/0.64 0.13/0.06 0.25/0.32

Node5 0.81/0.82 0.19/0.18 0.43/0.44 0.14/0.04 0.43/0.52

Node6 0.73/0.77 0.27/0.23 0.51/0.53 0.19/0.12 0.30/0.35

Node7 0.71/0.67 0.29/0.33 0.51/0.50 0.11/0.06 0.38/0.44

Node8 0.79/0.78 0.21/0.22 0.46/0.41 0.13/0.48 0.41/0.11

Fig. 7.8 Performance of
Sort with different HP in the
trained and untrained
scenarios

applications. In order to find appropriate values for the parameters, we tune one
parameter while fixing all the other parameters. According to the runtime algorithm
of SAMR that is proposed in Sect. 7.3.1, we evaluate the performance of Sort when
it is scheduled with SAMR having different HP, Task_Cap, Node_Cap, SN_Cap and
Strag_Cap. Experiment on WordCount shows similar results.

Figure 7.8 shows the performance of Sort with different HP in two scenarios:
untrained scenario and trained scenario. HP is the percentile of the recorded M1,
M2, R1, R2 and R3 in their new values as defined in Sect. 7.3.2. We construct the
trained scenario by executing Sort for two times before the current execution and
construct the untrained scenario by setting the recorded M1, M2, R1, R2 and R3 to
1, 0, 1

3 , 1
3 and 1

3 manually just like the assumption in Hadoop and LATE scheduler.
From the figure we can see that the value of HP does not affect the performance

of Sort too much in the trained scenario. However, the performance of Sort degrades
with the increasing of HP in the untrained scenario. The high and static performance
of Sort in the trained scenario is resulted from the well-trained value of M1, M2, R1,
R2 and R3. Figure 7.8 also suggests to use small HP if an application is executed
for the first time. In this way, the value of M1, M2, R1, R2 and R3 can be tuned
based on the current execution rapidly. Note that, if HP equals to 100%, the values
of M1, M2, R1, R2 and R3 in the current job equal to the recorded value. In this

www.manaraa.com

7.5 Performance Evaluation 195

Fig. 7.9 Performance of
Sort with different
Task_Cap, Node_Cap and
SN_Cap

case, SAMR scheduler is same to the LATE scheduler in the untrained scenario. In
the following experiments, SAMR fixes HP to be 20%.

Figure 7.9 shows the performance of Sort with different Task_Cap, Node_Cap
and SN_Cap in the slow setting. From the figure we can see that the best values of
Task_Cap, Node_Cap and SN_Cap are 30%, 20%, 30% respectively.

Task_Cap is the percentile of speed below which a task will be considered too
slow to be a slow task as defined in Sect. 7.3.4. As shown in Fig. 7.9, Sort gains best
performance when Task_Cap is 30%. Deduced from Eq. 7.11, the smaller Task_Cap
is the more tasks are classified to slow tasks. Therefore, if Task_Cap is smaller than
30%, some fast tasks are classified to slow tasks and even straggler tasks. In this
case, the launching of backup tasks for these wrong-classified tasks consume a lot
of system resources, so the overall execute time is prolonged. On the other hand, if
Task_Cap is larger than 30%, some slow tasks and even straggler tasks are classified
to fast tasks and none backup tasks are launched for them. These slow tasks will
prolong the execute time as well.

Node_Cap is the percentile of speed below which a node will be considered too
slow to be a map/reduce slow node as defined in Sect. 7.3.5. As shown in Fig. 7.9,
Sort gains best performance when Node_Cap is 20%. If Node_Cap is small than
20%, some fast nodes are treated as map/reduce slow nodes by fault. In this case,
the computing power of these wrong-classified nodes cannot be used to improve
the performance by executing backup tasks for straggler tasks. On the other hand,
if Node_Cap is larger than 20%, some map/reduce slow nodes are classified to fast
nodes by fault. In the case, backup tasks may be launched on these slow nodes. Since
the backup tasks on slow nodes will be finished later than the original straggler tasks,
the overall execute time cannot be shorten.

SAMR uses SN_Cap to configure the maximum number of slow nodes in a cluster.
As shown in Fig. 7.9, Sort gains best performance when SN_Cap is 30%. SN_Cap
is useful if Node_Cap is not configured appropriately, because SN_Cap limits the
number of slow nodes. SN_Cap guarantees that there are not too many nodes are
classified to slow nodes. If SN_Cap is smaller than 30%, some map/reduce slow
nodes may be classified to fast nodes when Node_Cap is too small (e.g., smaller than
20%). On the other hand, if SN_Cap is larger than 30%, some fast nodes may be

www.manaraa.com

196 7 MapReduce for Cloud Computing

Fig. 7.10 The performance
of Sort with different
Strag_Cap

classified to slow nodes when Node_Cap is too large (e.g., larger than 30%). The
wrong classification may result in the poor performance of SAMR.

SAMR uses Strag_Cap to configure the maximum number of backup tasks. As
shown in Fig. 7.10, Sort gains the best performance when Strag_Cap equals to 30%.
If Strag_Cap is smaller than 20%, SAMR is not able to launch backup tasks for all
the straggler tasks due to the small number of backup tasks. On the other hand, if
Strag_Cap is larger than 0.2, too many backup tasks will consume a large amount of
system resources, so the execution time of Sort is prolonged as well.

After a series of experiments, the best parameters for SAMR are: HP = 20%,
Task_Cap = 30%, Node_Cap = 20%, SN_Cap = 30%, Strag_Cap = 20% in our test
bed for Sort. These parameters must be re-specified for any new cluster.

7.6 Summary

Traditional MapReduce schedulers for Cloud computing suffer from poor perfor-
mance in heterogeneous environment, because they are not able to identify the real
straggler tasks due to the poorly estimated progress scores of the active tasks. In
order to address this problem, we have designed and implemented SAMR: a Self-
Adaptive MapReduce scheduler that tunes the weight of each phase of a map task
and a reduce task automatically based on historical statistics. Furthermore, SAMR
classifies slow nodes into map slow nodes and reduce slow nodes. In this way, SAMR
can launch backup tasks for reduce straggler tasks on map slow nodes and vice versa.
Experimental results demonstrate that SAMR can achieve up to 37% performance
gain compared with Hadoop, and up to 16% performance gain compared with LATE
scheduler.

7.6.1 Chapter Highlights

The following highlights of this chapter could be of your interest:

• We have proposed a history-based technique that automatically updates the weights
of different phases in a map/reduce task. Based on the accurate weights, the
progress of each active task can be precisely estimated.

www.manaraa.com

7.6 Summary 197

• Based on the precise estimated progress of each active task, we have proposed
SAMR that is able to identify the actual straggler tasks that would significantly
degrade the performance of a MapReduce job.

• We have proposed a technique that classifies slow nodes into map slow nodes and
reduce slow nodes further. In this way, SAMR can launch backup tasks for map
straggler tasks on reduce slow nodes and launch backup tasks for reduce straggler
tasks on map slow nodes.

• Experimental result shows that SAMR scheduler can achieve a performance gain
up to 37% for MapReduce jobs.

References

1. A. Aboulnaga, Z. Wang, and Z.Y. Zhang. Packing the most onto your cloud. In Proceeding of
the first international workshop on Cloud data management, pages 25–28. ACM, 2009.

2. F. Ahmad, S. T. Chakradhar, A. Raghunathan, and T. N. Vijaykumar. Tarazu: Optimizing mapre-
duce on heterogeneous clusters. InProceedings of the Seventeenth International Conference on
Architectural Support for Programming Languages and Operating Systems, ASPLOS XVII,
pages 61–74, New York, NY, USA, 2012. ACM.

3. L.A. Barroso, J. Dean, and U. Holzle. Web search for a planet: The Google cluster architecture.
IEEE Micro, 23(2):22–28, 2003.

4. H. S. Bhosale and D. P. Gadekar. Big data processing using hadoop: Survey on scheduling.
International Journal of Science and Research (IJSR), 3(10):272–277, 2014.

5. R. Buyya, C.S. Yeo, S. Venugopal, J. Broberg, and I. Brandic. Cloud computing and emerging
IT platforms: vision, hype, and reality for delivering computing as the 5th utility. Future
Generation Computer Systems, 25(6):599–616, 2009.

6. F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chandra, A. Fikes,
and R.E. Gruber. Bigtable: A distributed storage system for structured data. In Proceedings of
the 7th USENIX Symposium on Operating Systems Design and Implementation (OSDI 2006),
2006.

7. J. Chauhan, D. Makaroff, and W. Grassmann. The impact of capacity scheduler configuration
settings on mapreduce jobs. InCloud andGreen Computing (CGC), 2012 Second International
Conference on, pages 667–674. IEEE, 2012.

8. R. Chen, H. Chen, and B. Zang. Tiled-MapReduce: optimizing resource usages of data-parallel
applications on multicore with tiling. In Proceedings of the 19th international conference on
Parallel architectures and compilation techniques, pages 523–534. ACM, 2010.

9. Q. Chen, M. Guo, Q. Deng, L. Zheng, S. Guo, and Y. Shen. HAT: history-based auto-tuning
MapReduce in heterogeneous environments. The Journal of Supercomputing, 64(3):1038–
1054, 2013.

10. Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos Kozyrakis.
Evaluating mapreduce for multi-core and multiprocessor systems. InHPCA 2007: Proceedings
of the 2007 IEEE 13th International Symposium on High Performance Computer Architecture,
pages 13–24, Washington, DC, USA, 2007. IEEE Computer Society.

11. M. De Kruijf and K. Sankaralingam. MapReduce for the cell broadband engine architecture.
IBM Journal of Research and Development, 53(5):10, 2010.

12. J. Dean and S. Ghemawat. MapReduce: a flexible data processing tool. Communications of the
ACM, 53(1):72–77, 2010.

13. P. Elespuru, S. Shakya, and S. Mishra. Mapreduce system over heterogeneous mobile devices.
Software Technologies for Embedded and Ubiquitous Systems, pages 168–179, 2009.

14. W. Fang, B. He, Q. Luo, and N.K. Govindaraju. Mars: Accelerating MapReduce with Graphics
Processors. IEEE Transactions on Parallel and Distributed Systems, 2010.

www.manaraa.com

198 7 MapReduce for Cloud Computing

15. M.J. Fischer, X. Su, and Y. Yin. Assigning tasks for efficiency in Hadoop. In Proceedings of
the 22nd ACM symposium on Parallelism in algorithms and architectures, pages 30–39. ACM,
2010.

16. Hadoop. Hadoop home page. http://hadoop.apache.org/, 2011.
17. Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplied data processing on large clusters. In

OSDI 2004: Proceedings of 6th Symposium on Operating System Design and Implemention,
pages 137–150, New York, 2004. ACM Press.

18. W. Jiang, V.T. Ravi, and G. Agrawal. A Map-Reduce System with an Alternate API for Multi-
core Environments. In 2010 10th IEEE/ACM International Conference on Cluster, Cloud and
Grid Computing, pages 84–93. IEEE, 2010.

19. Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica. Improving
mapreduce performance in heterogeneous environments. In 8th Usenix Symposium on Oper-
ating Systems Design and Implementation, pages 29–42, New York, 2008. ACM Press.

20. Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker, and
Ion Stoica. Job scheduling for multi-user mapreduce clusters. Technical Report UCB/EECS-
2009-55, EECS Department, University of California, Berkeley, Apr 2009.

21. K. Morton, M. Balazinska, and D. Grossman. ParaTimer: a progress indicator for MapReduce
DAGs. In Proceedings of the 2010 international conference on Management of data, pages
507–518. ACM, 2010.

22. J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguadé, M. Steinder, and I. Whalley. Performance
Management of Accelerated MapReduce Workloads in Heterogeneous Clusters. In 39th Inter-
national Conference on Parallel Processing (ICPP2010). San Diego, CA, USA, 2010.

23. M.M. Rafique, B. Rose, A.R. Butt, and D.S. Nikolopoulos. CellMR: A framework for support-
ing mapreduce on asymmetric cell-based clusters. In Parallel & Distributed Processing, 2009.
IPDPS 2009. IEEE International Symposium on, pages 1–12. IEEE, 2009.

24. T. Sandholm and K. Lai. Dynamic proportional share scheduling in hadoop. In Job Scheduling
Strategies for Parallel Processing, pages 110–131. Springer, 2010.

25. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The google file system. In SOSP
2003: Proceedings of the 9th ACM Symposium on Operating Systems Principles, pages 29–43,
New York, NY, USA, 2003. ACM.

26. M.C. Schatz. CloudBurst: highly sensitive read mapping with MapReduce. Bioinformatics,
25(11):1363, 2009.

27. Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang. FPMR: MapReduce framework
on FPGA. In Proceedings of the 18th annual ACM/SIGDA international symposium on Field
programmable gate arrays, pages 93–102. ACM, 2010.

28. C. Tian, H. Zhou, Y. He, and L. Zha. A dynamic MapReduce scheduler for heterogeneous work-
loads. In Proceedings of the 2009 Eighth International Conference on Grid and Cooperative
Computing-Volume 00, pages 218–224. IEEE Computer Society, 2009.

29. L.M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner. A break in the clouds: towards
a cloud definition. ACM SIGCOMM Computer Communication Review, 39(1):50–55, 2008.

30. J. Varia. Cloud architectures. White Paper of Amazon, http://jineshvaria.s3.amazonaws.com/
public/cloudarchitectures-varia.pdf, 2008.

31. R.M. Yoo, A. Romano, and C. Kozyrakis. Phoenix rebirth: Scalable MapReduce on a large-scale
shared-memory system. InWorkload Characterization, 2009. IISWC 2009. IEEE International
Symposium on, pages 198–207. IEEE, 2009.

32. M. Zaharia, D. Borthakur, J.S. Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Job scheduling
for multi-user mapreduce clusters. Technical report, Technical Report UCB/EECS-2009-55,
University of California at Berkeley, 2009.

33. M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker, and I. Stoica. Delay schedul-
ing: A simple technique for achieving locality and fairness in cluster scheduling. In Proceed-
ings of the 5th European conference on Computer systems, pages 265–278, Paris, France, 2010.
ACM.

http://hadoop.apache.org/
http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf
http://jineshvaria.s3.amazonaws.com/public/cloudarchitectures-varia.pdf

www.manaraa.com

Chapter 8
QoS-Aware Task Reordering for Accelerators

Abstract Modern computers are being outfitted with non-preemptive accelerators,
such as GPU and FPGA, to provide the significant compute ability required by emerg-
ing large-scale workloads. While an accelerator is able to host multiple applications
concurrently, once the tasks are launched to an accelerator, there is no open interface
to schedule them. Lacking of task scheduling mechanism on non-preemptive accel-
erator limits the applicability of to accelerators in many fields. For instance, while the
latency-critical services hosted by accelerators in datacenter have diurnal access pat-
tern, it is not applicable to co-locate other applications with the services for improving
accelerator utilization. This is because interference when co-locating applications
on non-preemptive accelerators may result in the QoS violation of latency-critical
applications. Lacking the ability of scheduling tasks on accelerators makes it hard
to control the resource allocation between applications. To this end, in this chapter,
we present a task scheduling mechanism, Baymax, on non-preemptive processors.
After that, as a case study, we use Baymax to improve the accelerator utilization while
guaranteeing the Quality-of-Service of latency-critical applications. Using DjiNN,
a deep neural network service, Sirius, an end-to-end IPA workload, and traditional
applications on a Nvidia K40 GPU, our evaluation shows that Baymax improves
the accelerator utilization by 91.3% while achieving the desired 99%-ile latency tar-
get for latency critical applications. In fact, Baymax reduces the 99%-ile latency of
latency-critical applications by up to 195x over default execution.

8.1 Background and Existing Problems

We refer to accelerators that do not support context switching during kernel execu-
tion (such as ASICs, FPGAs and GPUs) as non-preemptive. Accelerators are often
connected to the host machine through PCIe bus. Before the tasks can be executed,

Part of contents in this chapter has been published through International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS). Reprinted
from Ref. [5], with permission from ACM. Figures 8.1, 8.8, 8.9, 8.10, 8.11, 8.12, 8.13, 8.14,
8.15, and 8.16 in this chapter have been published through International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS). Reprinted
from Ref. [5], with permission from ACM.

© Springer Nature Singapore Pte Ltd. 2017
Q. Chen and M. Guo, Task Scheduling for Multi-core and Parallel Architectures,
https://doi.org/10.1007/978-981-10-6238-4_8

199

www.manaraa.com

200 8 QoS-Aware Task Reordering for Accelerators

Fig. 8.1 Two applications
submit their tasks to the
same GPU

Accelerator

P1 P2

Task
queue

Non-preemptive
processing elements

Accelerator
memory

Data transfer

Host memory
First-come-first-serve

the required data need to be first transfer to the accelerator memory through the PCIe
bus. Without loss of generality, we use the GPU as our non-preemptive accelerator
platform throughout this chapter. Traditionally, an accelerator can only process a
single application, and the tasks (aka., kernels) are submitted and executed sequen-
tially. Recently, emerging accelerators, such as GPGPU, already supports multiple
applications to submit their kernels concurrently. In this case, the kernels are exe-
cuted in a First-Come-First-Serve manner. Figure 8.1 shows the way that the tasks
are executed on a recent GPU when multiple applications use the same GPU.

As shown in the figure, when two applications submit their tasks to the same
GPU, the computational tasks (kernels) are sorted according to their arrive time and
then executed sequentially. Meanwhile, the data transfer tasks contend for the PCIe
bandwidth to transfer their data between host memory and accelerator memory. How-
ever, besides the first-come-first-server execution manner, there is no open interface
to schedule the kernels in another manner. Lacking the ability to schedule the ker-
nels issued to the accelerator could result in severe problem in real-world scenario.
For instance, accelerators have been shown to be particularly suitable for emerging
datacenter applications from both performance and total cost of ownership (TCO)
perspectives [18]. Therefore, to satisfy the ever-growing user demand at a low cost,
datacenters have recently adopted accelerator-outfitted servers for these applications
[2, 22]. Meanwhile, since these services generally experience diurnal pattern [17,
21] (leaving the accelerator resources under-utilized for most of the time except
peak hours), it is more cost efficient to co-locate latency critical applications and
batch applications on accelerators. However, accelerator sharing introduces varying
amount of performance interference between co-located applications. Lacking of
the ability to schedule accelerator tasks, it is challenging to guarantee that latency
critical applications can meet their quality of service targets. In this chapter, we seek
to solve the task scheduling problem on non-preemptive accelerators.

8.2 Prior Work on Handling Accelerator Co-location

Prior work [12, 13, 24, 29] has proposed techniques to improve the performance
of traditional realtime GPU tasks (e.g., frames per second for video processing)
when they are co-located with other GPU tasks. For instance, TimeGraph [29] can

www.manaraa.com

8.2 Prior Work on Handling Accelerator Co-location 201

be implemented in real-system device driver to re-schedule GPU kernels; SMK
[34] can improve the overall system throughput by allowing warps from multiple
kernels on the same SMs. GPU-EvR [14] can minimize QoS violation of high priority
applications by allocating them more SMs. However, SMK and GPU-EvR require
hardware modification thus are not able to be applied in real-system accelerator.

8.2.1 TimeGraph

Kato et al. [29] proposed TimeGraph, a real-time GPU scheduler at the device-
driver level for protecting important GPU workloads from performance interference.
TimeGraph adopts an event-driven model that synchronizes the GPU with the CPU
to monitor GPU commands issued from the user space and control GPU resource
usage in a responsive manner.

8.2.1.1 Scheduling Policies

TimeGraph supports two scheduling policies:Predictable-Response-Time (PRT) and
High-Throughput (HT). PRT tries best to guarantee the QoS of high priority appli-
cations and HT aims to maximize the overall throughput without considering the
priorities of the co-located applications.

PRTScheduling: In the PRT scheduling policy, when a kernel is scheduled to run,
it has to wait for the completion of the preceding GPU kernels. In more detail, when
a new GPU kernel arrives at the device driver of a GPU, the kernel is submitted to the
GPU immediately if the GPU is currently free. Otherwise, if the GPU is currently
busy, the newly arrived kernel much sleep in the wait queue. The kernel with the
highest priority in the wait queue is woken up first, once the GPU completes the
current kernel. One weakness of this policy is that it may incur QoS violation of high
priority applications if the current running low priority kernel long. Furthermore,
because PRT needs to make a scheduling decision at every kernel boundary, it incurs
overhead that might hurt the overall throughput.

HTScheduling: In order to reduce the scheduling overhead, the HT policy allows
kernels to be submitted to the GPU immediately, if (i) the currently-executing kernel
was submitted by the same task, and (ii) no higher-priority tasks are ready in the wait
queue. Otherwise, they must suspend in the same manner as the PRT policy. Upon
an interrupt, the highest-priority task in the wait queue is waken up, only when the
GPU is idle. Compared with PRT policy, the QoS violation could be worse in HT
policy because a high priority kernel could be blocked by a great many continuous
low priority kernels.

The above two policies are not able to guarantee the QoS of high priority appli-
cations but tries to minimize the QoS violation.

www.manaraa.com

202 8 QoS-Aware Task Reordering for Accelerators

8.2.1.2 Resource Reservation Policies

TimeGraph supports two GPU reservation policies: Posterior Enforcement (PE) and
Apriori Enforcement (AE).PE enforces GPU resource usage after the current running
warps completes without sacrificing throughput and AE enforces GPU resource usage
before GPU warps are submitted using prediction of GPU execution costs at the
expense of additional overhead.

The two resource reservation policies are proposed to regulate GPU resource
usage for tasks scheduled under the PRT policy. In TimeGraph, each application is
assigned a reserve that is represented by capacity C and period T . Budget e is the
amount of time that an application is entitled for execution. Specifically, the budget
is decreased by the amount of time consumed on the GPU, and is replenished by at
most capacity C once every period T .

PE Reservation: In the PE policy, if the budget of an application is larger than
zero, the application’s kernels is allowed to be submitted to GPU. Otherwise, its
kernels goes to sleep until the budget is replenished. The budget can be negative,
when the task overruns out of reservation. The overrun penalty is, however, imposed
on the next budget replenishment. The budget for the next period is therefore given
by e = min(C, e + C).

AE Reservation: In AE policy, when a kernel of a application is submitted to
TimeGraph, the AE policy first predicts its cost x on the GPU. The kernel can be
actually submitted to the GPU, only if the predicted cost x is no greater than the
remaining budget of the application. Otherwise, the task goes to sleep until the
budget is replenished. The next replenishment amount depends on the predicted cost
x and the currently-remaining budget e. If the predicted cost x is no greater than the
capacity C , the budget for the next period is bounded by e = C to avoid transient
overload. Else, it is set to e = minx, e + C . The application can be waken up only
when e ≥ x .

After looking into the above description, we can find that TimeGraph generally
relies on priority-based policy to manage GPU kernels. Later in this chapter, we
will evaluate the performance of priority-based policy on guaranteeing the QoS of
latency-sensitive applications. Similar to TimeGraph, Elliott et al. [12] proposed
GPUSync, which also schedule GPU kernels using priority-based policies.

These techniques rely on users to provide task arrival rate, length of time win-
dow and the expected GPU time for each type of GPU tasks. Such information is
often unavailable in real datacenter environment. In addition, these techniques focus
on increasing throughput for high priority tasks, overlooking the long tail latency
problem, which is more critical for latency critical applications.

8.2.2 GPU-EvR

Lee et al. [14] proposed GPU-EvR that maps concurrent applications to different
streaming multiprocessors (SMs) on the same GPU. These techniques assign a fix

www.manaraa.com

8.2 Prior Work on Handling Accelerator Co-location 203

proportion of GPU time to high priority tasks but cannot guarantee that the realtime
tasks do not violate the QoS requirement [14].

While an active kernel occupies all the SMs in TimeGraph, the SMs can be
allocated to multiple concurrent kernels in GPU-EvR. The SMs allocation requires
hardware modification and is not applicable directly in emerging real system GPU.
GPU-EvR consists of a workload manager and a GPU manager.

8.2.2.1 Workload Manager

When an application is submitted, its response deadline, profiling data and priority
are also submitted to GPU-EvR at the same time. If there are no waiting applications
and the GPU has available resources, the application is directly submitted to the GPU.
Otherwise, the workload manager classifies the application based on its priority and
pushes it into a corresponding queue. Whenever there are available resources in
the GPU, the workload manager selects an application from any non-empty waiting
queues based on the priority.

Furthermore, in order to present the starvation of low priority applications, the
workload manager creates a special application queue, urgent queue. At runtime, the
workload manager tracks the system time Tcurrent and the required response time of
each application. Equation 8.1 calculates the time that application Ai has to start to
run in order to return before the deadline. In the equation, T resp

i and E(Ai) are the
response deadline of Ai and the processing time of Ai , respectively.

Tmargin
i = T resp

i − E(Ai) (8.1)

The workload manager compares Tcurrent and Tmargin
i of low priority applications.

If Tcurrent is close to Tmargin
i , the workload manager classifies the application Ai as

an urgent application and pushes the application onto the urgent queue. Applications
in urgent queues are submitted to GPU before all the other applications.

8.2.2.2 GPU Manager

With the above workload manager, the following two cases may happen.

• High priority applications are not submitted with enough resources: In this case,
resource reallocation is required to allocate enough GPU resources to high priority
applications.

• The application completes its operation on the GPU: After the application com-
pletes its work, GPU resources are released and made available to other appli-
cations. Therefore, currently executing applications are able to use more GPU
resources through resource reallocation.

In more detail, when GPU-EvR starts to reallocate resources, the GPU manager
creates a resource reallocation list and obtains the GPU resources for resource real-

www.manaraa.com

204 8 QoS-Aware Task Reordering for Accelerators

location. While creating the resource reallocation list, the GPU manager checks the
resource status of the application in a priority order. If the application has enough
GPU resources to meet the timing requirement, the GPU manager keeps the current
status. However, if the application does not have enough GPU resources, all the lower
priority applications are included on the resource reallocation list.

Note that, the GPU manager tries to reallocate resources for applications in a
priority order. For an application, if the required additional resources is less than the
re-allocatable resources, the GPU manager assigns required resources and updates
re-allocatable resources. Otherwise, current re-allocatable resources are assigned to
the current application.

Similar to GPU-EvR, Aguilera et al. [24] proposed a technique to guarantee QoS
of high priority tasks by spatially allocating them more SMs on a GPU. The two
systems assume that programmers can decide how to allocate SMs to the co-located
applications. However, commodity GPUs do not support allocating a set of SMs to
a specific application.

8.2.3 Simultaneous Multi-kernel (SMK)

Wang et al. [34] introduced a new notion of sharing a GPU that significantly improves
resource utilization (both static and dynamic) to boost overall system throughput.
Simultaneous Multikernel (SMK) draws an analogy from simultaneous multithread-
ing for CPUs, to increase thread-level parallelism (TLP) of a GPU. SMK exploits
kernel heterogeneity to allow fine-grain sharing by multiple kernels within each SM.
The fundamental principle is to co-execute kernels with compensating resource usage
in the same SM to achieve high utilization and efficiency.

The proposed GPU sharing mechanism aims to co-execute multiple kernels in the
same SM, as depicted in Fig. 8.2a. Initially K0 runs on both SM0 and SM1. When
K1 arrives and demands sharing, SMK will let K0 and K1 co-execute on both SM0

and SM1. This is in contrast to Spart [15], where K0 and K1 share the GPU through
splitting SMs, as depicted in Fig. 8.2b. Both schemes assume a general execution
model where applications do not necessarily arrive at the GPU at the same time,
so that sharing can happen dynamically and flexibly. To achieve this, the already
executing kernel must be preempted to save part of its context, and context of the
incoming kernel must be loaded. With Spart, the amount of context swapped is
in unit of an entire SM, which is hefty hundreds of kilobytes of memory traffic
overhead. SMK, on the contrary, requires swapping of only partial context of an SM,
as explained next.

8.2.3.1 Partial Context Switching

When a new kernel newK arrives, the current kernel K is partially preempted. The
context of K is saved to memory one TB at a time, until enough resources are

www.manaraa.com

8.2 Prior Work on Handling Accelerator Co-location 205

starts , share all SMs
me

(a) Proposed simultaneous
multikernel.

starts , spa ally par on SMs
me

(b) Sharing GPU via spatial
partitioning [57].

Fig. 8.2 Sharing GPU enabled by preemption

released to host one TB of newK . Hence, Wang et al. [34] terms our preemption
mechanism Partial Context Switching (PCS). The main distinctive feature of PCS is
that preemption takes place without blocking the SM, i.e., the SM continues executing
the remaining TBs of K while switching contexts. PCS leads to not only forward
progress in kernel execution during a context switch, but also less overhead.

8.2.3.2 Fair Allocation of Static Resources

Unlike Spart where resources are allocated in unit of SMs, SMK makes the SM a
divisible resource to better utilized them, improve the overall GPU throughput, and
achieve better fairness among sharers. SMK adopts Dominant Resource Fairness
(DRF) [11] to define the resource share of a kernel. The intuition behind DRF is that
multi-resource allocation should be determined by the maximum share that a kernel
requires of any resource. Hence, SMK uses the maximum share of register, threads,
shared memory and TB to define the resource share of the kernels (rK) and SMs
(rSM).

Wang et al. [34] proposed to allocate the resources for each kernel before their
TBs are dispatched. Wang et al. [34] termed this strategy as resource partitioning,
and the allocated resources for one kernel is called a resource partition. To create
resource partitions, the number of TBs of each kernel in each SM is calculated
through a iterative procedure, aiming to equalize rK for all kernels on one SM. Then,
the TBs are dispatched or swapped according to the generated resource partitions.
Our experimental results show that this allocation effectively improves the GPU
throughput.

8.2.3.3 Fair Allocation of Dynamic Resource

Wang et al. [34] has observed that kernels may have unfair performance, even though
the kernels have a fair share of static resources. Hence, they further develop algo-
rithms to perform dynamic resource allocation, in terms of kernel execution cycles,
via warp scheduling.

www.manaraa.com

206 8 QoS-Aware Task Reordering for Accelerators

In SMK, a fair allocation of computing cycles is defined as one where a kernel
has a share of cycles (Quotak) that is proportional to the amount required when
the kernel is executed exclusively on one SM (x). The proportion is determined by
the ratio of resources allocated in SMK (i.e., number of TBs) to resources used
in isolated execution (T). SMK obtains x and T by assigning a dedicated SM to
each kernel for profiling. During each epoch of execution, each warp scheduler
allocates Quotak × Epoch_length number of instructions for kernel k. The quota
is decremented when a instruction is issued. If one kernel’s quota reaches zero, new
instructions of the kernel will be blocked. If all quotas reach zero, new quotas will
be calculated and assigned to each kernel.

The proposed allocation of cycles ensures that the number of issued instructions
is related to the number of TBs of the kernel present in an SM. As a result, warps of
kernels can be relatively fairly scheduled by warp schedulers.

8.2.4 GPU Thread Preemption

At the hardware level, GPU thread preemption [16, 20] is also proposed to intelli-
gently schedule threads for improved hardware utilization. Tanasic et al. [15] pro-
posed a technique that improves performance of high priority processes by enabling
preemptive scheduling on GPUs. Wang et al. [33] proposed QoS mechanisms for a
fine-grained form of GPU sharing. The QoS support can provide control over the
progress of kernels on a per cycle basis and the amount of thread-level parallelism of
each kernel. However, the proposed technique requires vendors to add extra hardware
extensions and does not work on commodity accelerators. These techniques are out
of the scope of this book, thus we do not explain them in detail.

8.3 Real System Investigation on Accelerator Co-location

In this section, through real-system investigation, we show the problem that latency-
critical applications suffer from QoS violation at co-location on accelerators. Our real
system study uses both latency critical applications and batch applications. Latency
critical applications, such as emerging IPA application Sirius [18] and deep neural
network service DjiNN [19], run as permanent services on the accelerator, accept-
ing user queries and returning the results with stringent QoS requirement. Batch
applications on the other hand do not have QoS requirement but only require high
throughput. Both latency critical applications and batch applications consist of vari-
ous number of tasks (kernels and memcpy tasks1), and the duration of each task also
varies across applications. In this experiment, multiple latency critical applications

1A task that runs on processing elements is refer as a kernel and a task that transfers data through
PCI-e bus is refer as a memcpy task.

www.manaraa.com

8.3 Real System Investigation on Accelerator Co-location 207

Table 8.1 Benchmarks used in this chapter

Benchmark suite Workloads

Sirius suite in Sirius [18] asr, gmm, stemmer (stem)

Tonic suite in DjiNN [19] dig, face, imc, ner, pos

Rodinia [30] heartwall (hw), lavaMD (md), cfd, hybridsort (hsort),
hotspot (hs), nw, pathfinder (pf)

Fig. 8.3 QoS violation of latency critical applications at co-locations with default MPS scheduling
policy, when a latency-critical application is co-located with compute-intensive batch applications

Fig. 8.4 QoS violation of latency critical applications at co-locations with default MPS scheduling
policy, when a latency-critical application is co-located with PCIe-intensive batch applications

and batch applications submit kernels and memcpy requests to GPU simultaneously.
Table 8.1 lists the used benchmarks throughout this chapter.

Emerging GPU leverages MPS (Multi-Process Service) scheduling [23] to enable
concurrent sharing of a GPU among multiple applications. Figures 8.3 and 8.4 show
the QoS violation when a latency critical application is co-located with compute-
intensive/PCIe intensive batch applications on a Nvidia K40 GPU with MPS schedul-
ing policy, respectively. In the two figures, the x-axis indicates the combination of
latency critical application and batch application, and the y-axis shows the 99%-ile

www.manaraa.com

208 8 QoS-Aware Task Reordering for Accelerators

latency of the latency critical applications normalized to its QoS target (150 mil-
liseconds [17, 32]). The left part of the figure and the right part (shadowed part)
of the figure show the results when a latency critical application is co-located with
compute intensive batch applications and PCI-e intensive batch applications, respec-
tively. As shown in Fig. 8.3, the 99%-ile latency of latency critical queries in 22 out
of the 32 co-locations is much larger than the expected QoS target with default MPS
scheduling. As shown in Fig. 8.4, the 99%-ile latency of latency critical queries in 16
out of the 24 co-locations is much larger than the expected QoS target with default
MPS scheduling. The 99%-ile latency of latency critical applications is 10.8x of the
QoS target on average and up to 195.9x in the worst case. Observed from the above
experiment, we can find that it could be problematic to rely on accelerator itself to
schedule the tasks.

8.4 Investigation on Priority-Based Scheduling Policy

In order to improve schedule kernels on demand, researchers proposed priority-based
scheduling policy [12, 29]. In priority-based scheduling policy, each application is
given a priority, and the kernels are scheduled according to their priorities. In another
word, an accelerator executes high priority kernels first if multiple kernels are ready
to run.

Figures 8.5 and 8.6 show the QoS violation when a latency critical application
is co-located with compute-intensive/PCIe intensive batch applications on a Nvidia
K40 GPU with priority-based scheduling policy, respectively. Adopting priority-
based scheduling, as shown in Figs. 8.5 and 8.6, latency critical applications in 33
out of the 88 co-locations still suffer from QoS violation by 1.6x on average (up to
5.2x in the worst case).

The reason priority-based scheduling polices are not capable to guarantee the QoS
of latency critical applications (high priority) is that they are not aware of the duration

Fig. 8.5 QoS violation of latency critical applications at co-locations with priority-based scheduling
policy, when a latency-critical application is co-located with compute-intensive batch applications

www.manaraa.com

8.4 Investigation on Priority-Based Scheduling Policy 209

Fig. 8.6 QoS violation of latency critical applications at co-locations with priority-based scheduling
policy, when a latency-critical application is co-located with PCIe-intensive batch applications

of tasks. Whenever a latency critical application is not submitting kernels to GPU
due to stalls such as CPU synchronization, kernels of batch applications may take
over the GPU resource with long duration and high occupancy. Because emerging
accelerators (e.g., GPU) are non-preemptive, even if a latency critical kernel becomes
ready right after the submission of the long batch kernel, the latency critical kernel
would not be executed until the previous kernel completes. In this case, long queuing
delay is added to the latency critical kernel, risking QoS violations.

8.5 Design of Task Scheduling Mechanism
on Accelerators

As we mentioned before, limited by the existing GPU design, there is no open
interface to schedule tasks that are already launched to the GPU. We therefore design
a mechanism to schedule tasks on the CPU side. Figure 8.7 presents our design of
task scheduling mechanism on accelerators.

App 1

App 2

App 3

A
ccelerator

Scheduling

CPU Side Accelerator Side

Launch

Tasks

Ready Task Pool

Fig. 8.7 Design of task scheduling mechanism on accelerators

www.manaraa.com

210 8 QoS-Aware Task Reordering for Accelerators

As shown in Fig. 8.7, in the proposed scheduling mechanism, all the tasks submit-
ted to the accelerator are first pushed into a ready task pool managed by the scheduler
on the CPU side. This is achieved by simple automatic instrumentation of the orig-
inal task submission code. The task submission rerouting APIs can be provided to
programmers to submit tasks through the scheduler. When a task is pushed into the
ready task pool, users can design and implement various scheduling policies to fulfill
their specific requirements.

8.6 Case Study: QoS-Aware Task Scheduling on
Accelerator

Adopting the design presented above, as a case study, we propose a QoS-aware
task scheduler for accelerator, Baymax, to improve the accelerator utilization while
guaranteeing the QoS of latency-critical applications.

8.6.1 Root Causes of Long Tail Latency at Co-location

As presented in Sect. 8.4, previous scheduling policies result in the long tail latency
of latency-critical applications on non-preemptive accelerators. Before designing
the task scheduling policy for guaranteeing the QoS of latency-critical applications,
we first explore what are the root causes of long tail latency on non-preemptive
accelerators with emerging task scheduling policies.

Figure 8.8 presents two task execution timelines captured with nvprof [26], the
profiler provided by Nvidia officially, when co-locating face (latency critical) and

Fig. 8.8 Kernel execution timeline on GPU and data transfer timeline between host memory and
accelerator memory

www.manaraa.com

8.6 Case Study: QoS-Aware Task Scheduling on Accelerator 211

four compute intensive application hw, stem (latency critical) and four PCI-e inten-
sive application pf (details on benchmarks are shown in Table 8.1). Note that the
overlapping of green bars in Fig. 8.8a is not kernel preemption, but concurrent ker-
nel execution when using MPS. From the figure we observe that four factors may
impact the tail latency of a latency critical application when it is co-located with
other applications.

The duration and occupancy of kernels—If the occupancy of a kernel is high,
MPS is not able to overlap the kernel with its neighbor kernels to boost concurrent
kernel execution. In this case, if the duration of batch kernels is long, the execution
of latency critical kernels will be delayed significantly.

The kernel scheduling order—Accelerators, such as GPUs, schedule kernels in
the same order as they arrived (even if neighbor kernels can run concurrently when
the kernel occupancy is small). If the co-located batch applications submit kernels
frequently, the latency critical application will be delayed by a large amount of batch
kernels.

The number of kernels in a latency critical query—The more kernels a latency
critical query has, the longer its tail latency could be, because every kernel in the
latency critical query can be delayed by batch kernels. For example, as shown in
Fig. 8.8a, every kernel of face is delayed by at least two kernels of hw.

The contention on PCI-e bandwidth—If batch applications consume high PCI-
e bandwidth, latency critical applications may suffer from slow data transfer due to
the contention on PCI-e bandwidth. For example, as shown in Fig. 8.8b, the memcpy
task of stem is severely slowed down to more than 1000 milliseconds from only 15
milliseconds when it is running alone. This slow down in turn results in long tail
latency.

Based on the identified root causes of long tail latency, to improve the utiliza-
tion of non-preemptive accelerator while guaranteeing the QoS of latency critical
applications, Baymax should have the following four abilities.

• Baymax should be able to predict the duration of each kernel and memcpy task. In
this case, Baymax can quantify the impact of each task on the end-to-end latency
of latency critical applications.

• Baymax should be able to re-order all the kernels issued to the same accelerator,
no matter how they are submitted by the co-located applications.

• For a latency critical query, Baymax should be able to limit the overall time delayed
by the co-located applications regardless of the number of kernels in the query.

• Baymax should be able to monitor realtime data transfer pressure on PCI-e bus
and mitigate PCI-e bandwidth contention.

8.6.2 Design of Baymax

Following the design guidelines of task scheduling mechanism on accelerators pre-
sented in Sect. 8.5, Fig. 8.9 presents the design overview of Baymax.

www.manaraa.com

212 8 QoS-Aware Task Reordering for Accelerators

Latency-critical apps Baymax Runtime System

Batch apps

Image
processing

Users

Ready task pool

Real
duration

Voice
recognition

DNN
service

Question-
answer

Duration predictor Task scheduling engine

p1

pn

Predict duration Schedule tasks

k1 k2 km

Duration models

Control Feedback

SM

SM

Accelerator

PCI-e
Memcpy

Kernel

PCI-e bandwidth
contention

Queuing
delay

Memory

Host side Accelerator side

Fig. 8.9 Design of Baymax

In Baymax, all the tasks submitted to the accelerator are first pushed into a ready
task pool managed by Baymax on the CPU side. This is achieved by simple automatic
instrumentation of the original task submission code. The task submission rerouting
APIs can be provided to programmers to submit tasks through Baymax. When a
task is pushed into the ready task pool, the task duration predictor first predicts its
duration leveraging regression models (Sect. 8.7).

The task scheduling engine periodically iterates over all the tasks in the ready
task pool and decides whether each task can be launched to GPU. The scheduling
decision is based on the QoS target of latency critical applications and the predicted
duration of each task. If the task is a kernel and its predicted duration is larger than
the realtime QoS headroom of any active latency critical query, the kernel will stay
in the ready task pool. Otherwise, the kernel is launched to GPU (Sect. 8.8). On the
other hand, if the task is a memcpy task, the engine decides whether to launch the
task based on realtime data transfer pressure on PCI-e bus (Sect. 8.9).

8.7 Task Duration Modeling in Baymax

In this section, we present the modeling methodology used by Baymax to predict the
duration of GPU tasks.

8.7.1 Task Duration Predictor

Baymax builds duration models for three types of GPU tasks: memcpy, hand-written
kernel, and library call. Hand-written kernels are the kernels defined and written
by programmers. Besides writing their own hand-written kernels, an application can

www.manaraa.com

8.7 Task Duration Modeling in Baymax 213

GPU
task

Identify task type

Memcpy

Hand-written
kernel

Library call

Extract features

Data size
Transfer direction
Data storage type

Input data size
Grid size, Block size
Shared memory size

All the parameters

Predict with models

k1 k2

ki kn

l1

lj lm

l2

Predicted
duration

GPU
task

HtoD (pageable/pinned)

DtoH (pageable/pinned)

Fig. 8.10 Predict the duration of GPU tasks (memcpy, hand-written kernel, and library call)

also call APIs defined in highly-optimized GPU libraries (e.g., cuDNN [28] and
cuBLAS [6]). For the three types of GPU tasks, Fig. 8.10 shows the methodology to
predict their duration.

When a task is submitted to Baymax, the duration predictor identifies the type of
the task, extracts the representative features, and selects pre-trained duration model
according to the name of the GPU task (function name for hand-written kernels and
API name for library calls). Once the duration model is found, Baymax predicts
the duration of the task using the extracted features and the model, and attaches the
predicted duration to the task. After that, the task is pushed into the ready task pool
waiting for launching to GPU.

8.7.2 Selecting Representative Features

It is challenging to predict the duration of GPU tasks because there is very limited
information we can obtain at runtime. Although nvprof [26] provides comprehen-
sive performance metrics after measuring the entire task execution, no performance
information can be accessed before the task is executed. It is not applicable to rely
on these metrics to predict the duration of GPU tasks.

The only information we can obtain before a GPU task is executed includes its
configurations (e.g., grid size, block size etc.) and the parameters passed to the task.
We further select the information that strongly impact a task’s duration on GPU
(e.g., input scale and task configurations) as representative features. Empirically, to
capture the correlation between features of a GPU task and its duration, as listed in
Table 8.2, we select different features for different types of GPU tasks.

For a memcpy task, we select data size, data transfer direction and data storage
type as its representative features. Data to be transferred from/to GPU can be stored
in either pageable memory or pinned memory [8]. It is much faster (around 4x faster)
to transfer data from pinned memory compared with pageable memory while more
time is needed to initialize pinned memory when it is allocated.

For a hand-written kernel, we use kernel configuration and input data size as the
features. The grid size and the block size determine the scale of thread level par-

www.manaraa.com

214 8 QoS-Aware Task Reordering for Accelerators

Table 8.2 Features selected for different types of tasks

Task type Features Dimension

Memcpy Data size 1

Data transfer direction 1

Data storage
(pageable/pinned [8])

1

Hand-written kernel Input data size 1

Grid size (X × Y × Z) 3

Block size (X × Y × Z) 3

Size of required shared
memory

1

Library call All the parameters /

allelism on GPU and the GPU occupancy of the kernel, which significantly affect
its duration; the size of required shared memory (both static shared memory and
dynamic shared memory) reflects the efficiency of the kernel leveraging the memory
hierarchy on GPU. We train different duration models for hand-written kernels exe-
cuting different functions, because they often have totally different characteristics.

A library call may consist of multiple kernels, while the actual kernels and their
configurations are hidden behind the API. Therefore, we treat all the kernels in a
library call as a whole, and use all the parameters of the API as its representative
features. For several widely used libraries (i.e., cuBLAS and cuDNN), we only need
to train models for them once and use the models in all applications.

Besides fine-grained GPU tasks, the duration predictor also predicts the solo-run
duration of each latency critical query when the query is first launched. For a latency
critical query, we select its input data size as its representative feature.

8.7.3 Low Overhead Prediction Models

The QoS target of a latency critical query is in the granularity of hundreds of millisec-
onds to support smooth user interaction [17, 32]. Therefore, choosing the modeling
techniques with low computation complexity and high prediction accuracy for the
online duration predictor becomes critical.

We evaluated a spectrum of widely used prediction models (e.g., Linear Regres-
sion (LR) [10], Approximate Nearest Neighbor (ANN) [3], K-Nearest Neighbor
(KNN) [9] and Support Vector Machines (SVM) [4]) to predict task duration and
eventually selected LR and KNN for their high accuracy and low overhead. While
LR assumes the linear relationship between input and output variables, KNN regres-
sion holds no such assumption. Therefore using both LR and KNN allows us to
achieve accurate prediction for both linear and non-linear relations. Other evaluated
models either require longer calculation time with no accuracy improvement (e.g.,

www.manaraa.com

8.7 Task Duration Modeling in Baymax 215

SVM), or cannot provide satisfactory accuracy (e.g., ANN). Both KNN and LR
achieve low prediction overhead. According to our measurement on real hardware,
the duration prediction overhead with KNN model and LR model in Baymax is under
0.05 millisecond.

Suppose a task has p representative features. Let Xi represent an input sample
with p features (x1, x2, . . . , xp), and n represent the total number of input samples
(i = 1, 2, . . . , n). The linear regression model is defined as Eq. 8.2, and the Euclidean
distance for KNN model between sample Xi and Xl(l = 1, 2, . . . , n) is defined as
Eq. 8.3. In our case, the input is the task features and the output is the predicted task
duration. The primary computation of KNN is to calculate the Euclidean distance
between the predicting and training samples, which can be accelerated with different
tree searching algorithms such as K-D tree and ball tree. We pick the most efficient
KNN searching algorithm when training prediction model according to the number
of samples and the number of features in every sample.

yi = β1xi1 + . . . + βpxip + εi , i = 1, . . . , n (8.2)

d(Xi , Xl) =
√

(xi1 − xl1)2 + . . . + (xip − xlp)2 (8.3)

8.7.4 Minimizing Prediction Error

To achieve high prediction accuracy, we apply both KNN and LR to each task in
both latency critical and batch applications, and choose the model that fits the data
most to predict the task duration at runtime. As shown in Sect. 8.7.5, LR model and
KNN model achieve different prediction accuracy for latency critical applications
and batch applications respectively. Since the duration models are trained offline
with the profiled performance samples from the workloads, more sample data is usu-
ally effective to improve the accuracy of the duration models. Especially, in WSCs,
the workloads become stable after certain time scale and the models become more
accurate with periodical updates. Moreover, the duration predictor detects the predic-
tion deviation at runtime. If the deviation exceeds a certain threshold, incremental
update [7] and parallel update [31] can be applied during runtime with low over-
head to refine the duration models, which continuously improves the accuracy of the
duration prediction.

8.7.5 Prediction Accuracy

In this section, we present the accuracy of the task duration predictor in Baymax.
The representative features for different types of tasks are listed in Table 8.2, and the
benchmarks can be found in Table 8.1. The prediction error for the duration of task

www.manaraa.com

216 8 QoS-Aware Task Reordering for Accelerators

Fig. 8.11 Prediction error for the duration of memcpy tasks and library calls. In a, the x-axis is the
size of data to be transferred (KB); In b, the x-axis is the library calls. Baymax achieves 3.2 and
6.2% prediction errors on average for memcpy and library call respectively

t (memcpy, hand-written kernel or library call) is calculated in Eq. 8.4.

Errt =
∣∣∣Duration predicted

t − Durationmeasured
t

∣∣∣
Durationmeasured

t

(8.4)

To construct the training and testing data sets for our prediction models, we collect
a large amount of samples, and randomly choose 90% of the samples to train the
model and use the rest to test. For KNN model, we choose the number of nearest
neighbors to be 5 (K = 5).

8.7.5.1 Prediction Accuracy for Memcpy

In order to build duration models for memcpy tasks, we create a micro kernel to
transfer data between main memory and GPU global memory with arbitrary input
sizes. The range of data transfer size in our experiment reflects the actual size of
memcpy tasks cross all the benchmarks. As shown in Fig. 8.11a, with the tested data
size profiled from all the benchmarks, LR model is able to accurately predict the
duration of memcpy across all workloads, which also in accordance with existing
literature. The average prediction error is smaller than 3.2%, when the duration is
longer than two milliseconds. Thus, Baymax uses LR to predict the duration of
memcpy tasks.

8.7.5.2 Prediction Accuracy for Library Call

Library calls take a large portion of GPU execution time across emerging latency crit-
ical applications. All the library APIs used in the benchmarks are listed in Table 8.3.

www.manaraa.com

8.7 Task Duration Modeling in Baymax 217

Table 8.3 Frequently used library APIs

Library API name

cuBLAS [6] sgemm/dgemm

cuDNN [28] convolutionForward, addtensor4d
poolingForward, activationForward, softmaxForward

These library calls control which kernel to launch as well as the launch configuration
with detailed information hidden behind the APIs.

To build duration model for a library call, we analyze every parameter to the library
call according to its API definition and extrapolates the size of the input based on
the number as well as the data type of the input parameters. Using the input size
as the representative feature available at runtime, the prediction fits well into linear
regression model as shown in Fig. 8.11b, which is consistent with the findings in prior
work [27, 28]. Across all the 180 calls of the library APIs in all the benchmarks, our
models can precisely predict the duration of library calls with the prediction error
smaller than 6.2%, when the duration is longer than two milliseconds.

If the duration of a library call or a memcpy task is shorter than two milliseconds,
even if its duration is not predicted precisely, it will not affect the latency of the
co-located applications seriously.

8.7.5.3 Prediction Accuracy for Hand-Written Kernel

The behaviors of hand-written kernels are quite diverse across benchmark suites.
While Rodinia is composed of classic HPC workloads that exhibit high thread level
divergence on GPU, workloads in Sirius and Tonic are speech recognition, nature
language processing and DNN computation that rely on large matrix multiplication
with almost no divergence. To build duration models for hand-written kernels, we
collect performance samples, including features and duration, using nvprof [26].
Note that most of the workloads in Rodinia contain iterative kernel invocations in
their implementations and we treat each kernel invocation as an individual sample.
To provide rigid validation, we use different samples to train model and to evaluate
prediction accuracy.

As shown in Fig. 8.12, no single regression model fits both latency critical and
batch applications perfectly. In general, KNN works better than LR for Rodinia since
in some cases (e.g., hs and md) the prediction of LR goes extremely wrong. This
observation reveals that the duration of a kernel and its inputs do not always have
a linear relationship. Whereas for Tonic suite and Sirius suite, the computation is
more regular and predictable, LR has more advantage over KNN with a constrained
sample dataset. The average prediction error of KNN for the kernels in Rodinia is
7.2% on average, and the prediction error of LR for Sirius suite and Tonic suite is
5.8% on average.

www.manaraa.com

218 8 QoS-Aware Task Reordering for Accelerators

Fig. 8.12 Prediction error for the duration of Sirius, Tonic, and hand-written kernels in Rodinia.
KNN model achieves 7.2% prediction error for Rodinia; LR model achieves 5.8% prediction error
for Sirius suite and Tonic suite

8.8 Scheduling Hand-Written Kernels and Library Calls

In this section, we describe the policy used to schedule hand-written kernels and
library calls in Baymax. For ease of description, a kernel can be either a hand-written
kernel or a library call in this section.

8.8.1 Breaking down the End-to-end Latency

It is important to understand the end-to-end latency breakdown of a latency critical
query when it is co-located with other applications before diving into the QoS-aware
task scheduling policy. We first assume the co-located applications do not contend
for PCI-e bandwidth. We will discuss the scheduling policy for tasks that transfer
data through PCIe bus in Sect. 8.9.

Figure 8.13 presents the end-to-end latency breakdown of a latency critical query
Q when it is co-located with other applications. The end-to-end latency of a query
is the time from the first kernel of the query is issued to the last kernel of the query
is returned. As shown in the figure, Q’s end-to-end latency is composed of three
parts. The first part is the processing time of the queued kernels (black kernels in
Fig. 8.14) that are issued before k1 gets executed (denoted by Tq). The second part is
the processing time of Q’s own kernels (denoted Tsel f). The last part is the processing
time of the kernels (line-filled and white kernels) from the co-located applications
between k1 and kn (denoted by Tother).

www.manaraa.com

8.8 Scheduling Hand-Written Kernels and Library Calls 219

k1

GPU
Time line

k1

kn

kn

Latency critical query Q

Delay Delay

End-to-End Latency of Q

DelaySubmit

Kernel of Q

Kernel of other apps

Queued kernel

Fig. 8.13 End-to-end latency breakdown of a latency critical query Q when it is co-located with
other applications

8.8.2 Scheduling Policy

Based on the end-to-end latency breakdown and the precisely predicted duration of
tasks, we can schedule computational tasks carefully so that the end-to-end latency
of a query always smaller than the QoS target. In this case, the utilization of hardware
can be maximized while still guaranteeing the QoS of latency critical applications.
Without loss of generality, let Ttgt represent the QoS target of query Q. Only if
Tsel f + Tq + Tother ≤ Ttgt , Q’s QoS is satisfied. In the equation, Tsel f is predicted
according to the prediction model proposed in Sect. 8.7. In this case, to guarantee
Q’s QoS, the task scheduling engine in Baymax monitors Tq and reduces Tother as
follows.

8.8.2.1 Monitoring Queued Time

To estimate the queuing delay a latency critical query will experience, Tq , Baymax
sums up the predicted duration of all the kernels that are already issued to GPU by
the task scheduling engine but are not yet executed (still waiting in the GPU queue).
Specifically, once a kernel is issued to GPU, we add its predicted duration to Tq ,
the duration of all the un-executed kernels on GPU. Once a kernel completes, we
subtract its predicted duration from Tq .

To eliminate the situation that a latency critical query is significantly delayed by
the queued-up kernels on GPU, even if no active latency critical query is running
on the GPU, Baymax makes sure that Tq is smaller than the QoS target Ttgt . If
Tq > Ttgt , Baymax would not issue any kernel to GPU until some kernels complete.
This method would not reduce the GPU utilization because the kernel will be queued
up on GPU even if it is issued to GPU.

www.manaraa.com

220 8 QoS-Aware Task Reordering for Accelerators

8.8.2.2 Calculating QoS Headroom

As discussed above, Tsel f and Tq are known and cannot be reduced when Q is
launched. In this case, to guarantee Q’s QoS, Baymax makes sure that Tother ≤
Ttgt − Tsel f − Tq . We use Thr to represent the free GPU time left for kernels from
the co-located applications during the execution of Q (referred as QoS headroom).
When the first kernel of Q is launched, Thr = Ttgt − Tsel f − Tq .

Based on Thr , the task scheduling engine periodically iterates over the ready task
pool to check whether each kernel can be safely issued to GPU without causing any
QoS violation. Suppose the predicted duration of a kernel is t . If t is larger than Thr ,
the kernel is delayed until Q completes. On the other hand, if t is smaller than Thr ,
the kernel is launched to GPU, and at the same time, Thr is reduced by t .

8.8.2.3 Dealing with Multiple Active Latency Critical Queries

When multiple latency critical queries are active, more complexity is introduced
when calculating the headroom of each latency critical query. Figure 8.14 describes
the method to calculate Thr of query Q when multiple latency critical queries are
active. As shown in the figure, if query Qi is still active when the first kernel of
query Q is launched, the un-executed kernels of Qi have to be completed before
Td so that the QoS of Qi is satisfied. In this case, when we calculate Thr for Q, the
GPU time reserved by the un-executed kernels of Qi need to be subtracted from
Ttgt as well. Therefore, we monitor the GPU time each active query still needs to
complete the whole query. For Qi in Fig. 8.14, we estimate Qi ’s remaining GPU
time by subtracting the time of its completed kernels from its estimated overall GPU
time (Tsel f of Qi).

Suppose there are n active latency critical queries when Q is launched. Let t1, …,
tn represent the remaining GPU time required by the n active latency critical queries
respectively. Equation 8.5 calculates Q’s QoS headroom when it is issued.

k1

Time line
k1

kn

kn

Query Q

Delay Delay

end-to-end latency of Q
Ttarget

Query
Qi

Delay

Td

Completed
Kernel of Q
Kernel of other apps

Kernel of Qi

Queued kernel

Fig. 8.14 Calculating QoS headroom of Q when its first kernel is launched

www.manaraa.com

8.8 Scheduling Hand-Written Kernels and Library Calls 221

Thr = Ttgt − Tq − Tsel f −
n∑

i=1

ti (8.5)

When multiple queries are active, if the predicted duration of a kernel (denoted
by t) is larger than the QoS headroom of any active query, the kernel will be delayed.
Otherwise, the kernel is launched and the QoS headroom of each latency critical
query is reduced by t .

It is worth noting that Baymax would not result in starvation of any latency
critical query even if multiple queries are active concurrently. latency critical kernels
are issued in an FIFO order and a batch kernel can be issued only when it will not
result in QoS violation of any active latency critical query.

8.8.2.4 Adapting to Concurrent Kernel Execution

In Sect. 8.8.2, we assume that a GPU is not able to concurrently execute multiple
kernels. Actually, leveraging emerging MPS technique [23], a GPU is able to execute
multiple independent kernels that have low occupancy concurrently.

When concurrent kernel execution happens, Thr calculated in Eq. 8.5 is smaller
than the real GPU time available for the co-located applications. In this case, the GPU
utilization is not maximized because there is actually more GPU time can be used
to process batch applications while guaranteeing the QoS of all the active latency
critical queries.

To further increase GPU utilization when MPS is enabled, as shown in Fig. 8.15,
when kernel ki of Q is submitted to the ready task pool, Baymax updates the QoS
headroom of Q. In this way, the time saved from previous concurrent kernel execution
can be refilled to the QoS headroom for executing batch applications. Based on
Eq. 8.5, the QoS headroom of Q when it submits ki can be calculated in Eq. 8.6.

Thr = (Ttgt − Tused) − Tq − (Tsel f −
i∑

j=1

Tj) −
n∑

i=1

ti (8.6)

k1

Time line
k1

kn

kn

Query Q

Ttgt

Tused

ki

ki

Tq

Fig. 8.15 Updating QoS headroom of Q when it submits task ki , if concurrent kernel execution is
enabled

www.manaraa.com

222 8 QoS-Aware Task Reordering for Accelerators

In the equation, Tj is the processing time of kernel k j , Tsel f − ∑i
j=1 Tj is the

remain GPU time reserved by Q itself, Tused is the time from the beginning of Q
to ki is submitted, Tq is the realtime queuing time, ti is the remaining GPU time
required by the active latency critical queries launched before Q as calculated and
defined in Sect. 8.8.2.3.

In summary, the QoS headroom of a latency critical query will be updated when
a kernel of the co-located applications is launched to GPU and when a new kernel
of the query is submitted to the ready task pool.

8.9 Scheduling Data Transfer Tasks

If the co-located applications only have computational tasks (hand-written kernels
and library calls), the scheduling proposed in Sect. 8.8 can already guarantee the
QoS. However, real-world applications consist of both computational kernels and
data transfer tasks. Even if the hand-written kernels/library calls are re-ordered as
presented in Sect. 8.8, without considering PCI-e bandwidth contention caused by
data transfer tasks, latency critical applications may still suffer from severe QoS
violation. In this section, we analyze the impact of PCI-e bandwidth contention on
CPU-accelerator data transfer rate per memcpy task and mitigate the contention for
achieving QoS of latency critical applications.

8.9.1 Characterizing PCI-e Bandwidth Contention

Remember that data to be transferred from/to GPU can be stored in either pageable
memory or pinned memory [8]. It is much faster (around 4x faster) to transfer data
from pinned memory compared with pageable memory while more time is needed
to initialize pinned memory when it is allocated. To this end, Fig. 8.16 reports the
data transfer rate of a latency critical application stem when it is co-located with sev-
eral applications that transfer data in the same direction. Data transfers in different
directions do not interfere with each other, because PCI-e bus supports full-duplex
communication. In the figure, the legends show the data transfer direction. For exam-
ple, “HtoD_pageable_pinned” means stem transfers data from pageable memory to
GPU, while the co-located applications transfer data from pinned memory to GPU.
From the experiment, we have two main observations.

Observation 1: Transferring data from and to pageable memory degrades the
performance of its co-located memcpy tasks only when more than three memcpy
tasks are running concurrently (“*_*_pageable” in Fig. 8.16). As shown in the figure,
when stem uses pageable memory and transfers data through PCI-e bus alone, the
achieved data transfer rate is 3,150MB/s. Because the theoretical peak bandwidth of
16x PCI-e 3.0 bus used in our platform is 15,800MB/s and the effective bandwidth
is 12,160MB/s [1], the bus can only support � 12160

3150 � = 3 memcpy tasks to transfer

www.manaraa.com

8.9 Scheduling Data Transfer Tasks 223

Fig. 8.16 Data transfer rate of stem when it is co-located with applications that transfer data in the
same direction

data in their full speeds in the same direction. We generalize this observation in
Sect. 8.9.2.

Observation 2: A single memcpy task that transfers data from/to pinned mem-
ory would severely degrade the performance of its co-located memcpy tasks (“*_*_
pinned” in Fig. 8.16). As shown in the figure, transferring data from/to pinned mem-
ory requires up to 11,883MB/s PCI-e bandwidth, which saturates the whole PCI-e
bus. In this case, all the other memcpy tasks will be queued up and have to wait for
its completion.

8.9.2 Scheduling Policy

Baymax mitigates QoS violations due to PCI-e bandwidth contention by reducing the
number of concurrent memcpy tasks and considering data transferring delay when
calculating QoS headroom for active latency critical queries.

Let BWpeak represent the effective PCI-e bandwidth, BWmemcpy represent the
peak data transfer rate from/to pageable memory per memcpy task. According to
observation 1, to make sure that memcpy tasks of latency critical applications can
always transfer data in full speed, Eq. 8.7 calculates the number of active batch
memcpy tasks Ntr that we should allow in each direction. For our platform Ntr is
two.

Ntr = �BWpeak/BWmemcpy� − 1 (8.7)

Baymax periodically iterates over the ready task pool to check whether each
memcpy task can safely start to transfer data. If the memcpy task is from a batch
application and there are already Ntr active memcpy tasks, the task is delayed until
one memcpy task completes. If the memcpy task is from a latency critical query, it
is directly issued to GPU to minimize queuing delay.

According to the second observation, if a memcpy task mc uses pinned memory,
it may severely delay the data transfer of latency critical queries. Let t represent the
predicted duration of mc. If t is larger than the QoS headroom of any active latency

www.manaraa.com

224 8 QoS-Aware Task Reordering for Accelerators

critical query, mc will not be launched. Otherwise, mc can start to transfer data, but
to avoid QoS violation due to the possible queuing delay caused by mc, the QoS
headroom of every active latency critical query is reduced by t . This method would
not degrade the accelerator utilization. If mc does not cause severe queuing delay,
the QoS headroom of each active latency critical query will be refilled when a new
task is launched as described in Sect. 8.8.2.4.

8.10 Performance of Baymax

In this section, we evaluate whether Baymax that schedules accelerator tasks on
CPU side, can successfully guaranteeing the QoS of latency-critical applications
while maximizing the accelerator utilization.

8.10.1 Experimental Configuration

We evaluate Baymax using Nvidia GPU K40. Note that Baymax does not rely on
any special hardware features or characteristics of K40 and treats it as a generic
non-preemptive accelerator. The detailed setups are summarized in Table 8.4. MPS
[23] is enabled to allow concurrent kernel execution on GPU. As we already listed
in Table 8.1, we use Tonic suite [19] in DjiNN and Sirius suite [18] in Sirius as the
latency critical applications; use eight most compute intensive and three most PCI-e
intensive applications from Rodinia [30] as batch applications. In order to evaluate
the impact of memcpy tasks using both pageable memory and pinned memory, we
configure hs to use pageable memory, pf and nw to use pinned memory.

Furthermore, the QoS is defined as the 99%-ile latency, and the accelerator uti-
lization is measured as the ratio of batch application execution time to the whole
co-location execution time.

Table 8.4 Hardware and software specifications

Specifications

Hardware CPU Intel Xeon E5-2620 @ 2.10GHz
Nvidia GPU Tesla K40

Software CentOS 6.6 x86_64 with kernel 2.6.32-504
CUDA Driver 340.29, CUDA SDK 6.5, CUDA MPS

www.manaraa.com

8.10 Performance of Baymax 225

8.10.2 QoS and Throughput

In this section, we evaluate the effectiveness of Baymax in increasing the accelerator
utilization while satisfying the QoS requirement of latency critical applications.

Figure 8.17 presents the average latency, 99%-ile latency of latency critical
queries, and the improved accelerator utilization when latency critical applications
are co-located with batch applications. In the figure, “Baymax” updates the QoS
headroom of each latency critical query when a new kernel is issued to squeeze
the extra QoS headroom benefited from concurrent kernel execution as presented
in Sect. 8.8.2.4. “Baymax-NC”, on the contrary, does not squeeze the extra QoS
headroom.

Figure 8.17a and b show that both Baymax-NC and Baymax are able to effectively
satisfy the QoS for latency critical applications under different pair-wise co-locations.
On the contrary, default MPS scheduling [23] and priority-based scheduling [12, 29]
cannot satisfy the QoS for latency critical applications as presented in Sects. 8.3 and

Fig. 8.17 Normalized average latency, 99%-ile latency of latency critical queries, and accelerator
utilization when latency critical applications are co-located with compute-intensive batch applica-
tions. Different from Baymax, Baymax-NC does not consider concurrent kernel execution

www.manaraa.com

226 8 QoS-Aware Task Reordering for Accelerators

8.4. With MPS scheduling and priority-based scheduling, the 99%-ile latency of
latency critical queries is up to 195.9x and 5.2x of the QoS target, respectively.

Figure 8.17a and b also show that the average latency and 99%-ile latency of
latency critical queries in Baymax is higher than in Baymax-NC. This is because
Baymax squeezes more QoS headroom to trade off higher GPU utilization. As shown
in the Fig. 8.17c, Baymax-NC increases the accelerator utilization by 70.8% on aver-
age, and Baymax further increases the average accelerator utilization by 11.4%. The
reason of utilization increasing is that Baymax can utilize the saved GPU time from
concurrent kernel execution to execute more batch kernels.

Observed from Fig. 8.17, for some co-location pairs (e.g., dig+hsort and ner+hw),
the accelerator utilization is not increased using Baymax compared to Baymax-NC.
This is because the kernels of these batch applications have large GPU occupancy.
In this case, MPS does not have chance to execute multiple kernels concurrently and
Baymax cannot squeeze extra GPU time for batch applications.

8.10.3 Scheduling Data Transfer Tasks

As presented in Sect. 8.9, Baymax also mitigates PCI-e bandwidth contention through
scheduling data transfer tasks for achieving QoS of latency critical applications.
Figure 8.18 shows the average latency and 99%-ile latency of latency critical queries
when they are co-located with PCI-e intensive batch applications. As shown in the
figure, the QoS requirement of latency critical queries cannot be satisfied if PCI-e
bandwidth contention is not mitigated (shown as “Baymax-NP” in Fig. 8.18). As
shown in the figure, latency critical queries still suffer from up to 5.1x QoS violation
in Baymax-NP.

Even if a latency critical application is not PCI-e intensive, its occasional data
transfer can be severely delayed by memcpy tasks from batch applications. For
example, while less than 10% of GPU time is spent on PCI-e data transfer for imc
and face, they still suffer from severe QoS violation due to the unmanaged and
unpredicted PCI-e bandwidth contention in Baymax-NP.

Figure 8.18c shows that the accelerator utilization in Baymax and Baymax-NP
are similar for most of the co-locations. This is mainly because existing emerging
latency critical applications do not transfer data between CPU and GPU frequently,
and the duration of their memcpy tasks is often less than 10 milliseconds (Fig. 8.11).
In this case, the memcpy tasks in batch applications will not be delayed seriously
and the accelerator utilization is not reduced seriously in Baymax compared with in
Baymax-NP.

www.manaraa.com

8.10 Performance of Baymax 227

Fig. 8.18 Normalized average latency, 99%-ile latency of latency critical queries, and accelerator
utilization when latency critical applications are co-located with PCI-e intensive batch applica-
tions. Different from Baymax, Baymax-NP does not mitigate PCI-e bandwidth contention through
scheduling data transfer tasks

8.10.4 Beyond Pair-Wise Co-locations

To evaluate the robustness of Baymax in dealing with more complex co-location
scenarios, we pick all the Rodinia benchmarks in Table 8.1 to form a mixture of
batch applications, and co-locate them all with the latency critical applications from
both Sirius suite and Tonic suite.

We report the normalized average latency and 99%-ile latency of latency critical
queries, and accelerator utilization in this scenario in Fig. 8.19. As shown in the figure,
Baymax is robust enough to increase the accelerator utilization while guaranteeing
the QoS of latency critical applications. The average latency and 99%-ile latency
of latency critical applications with Baymax and Baymax-NC are always within the
QoS target as shown in Fig. 8.19a and b. On the contrary, Baymax-NP cannot satisfy
the QoS of latency critical application (up to 1.6x QoS violation in terms of 99%-
ile latency) due to the unawareness of PCI-e bandwidth contention. Compared with
Baymax-NP, Baymax can achieve similar utilization improvement while satisfying

www.manaraa.com

228 8 QoS-Aware Task Reordering for Accelerators

Fig. 8.19 Normalized average latency, 99%-ile latency of latency critical queries, and accelerator
utilization when each latency critical application is co-located with all the batch applications

the QoS of all the latency critical applications. Compared with Baymax-NC, Baymax
can further increase the average accelerator utilization from 81.2 to 87.4% as shown
in Fig. 8.19c.

8.11 Summary

In this chapter, we discuss task scheduling techniques for non-preemptive accelera-
tors. Limited by the existing GPU design, there is no open interface to schedule tasks
that are already launched to the GPU. We therefore design a mechanism to schedule
accelerator tasks on the CPU side. Based on the proposed scheduling mechanism, we
further design and implement Baymax to improve the utilization of accelerator hard-
ware while guaranteeing the required QoS target of latency critical time-sensitive
applications.

Through real-system investigation, we find that four main factors affect the queu-
ing delay and data transfer latency and thus the end-to-end latency of latency critical
applications. These factors include the number of tasks in a latency critical query
that indicates how many tasks could be delayed, the task execution order that decides
which tasks may cause the delay for each latency critical task, the duration and occu-

www.manaraa.com

8.11 Summary 229

pancy of batch tasks that impact the queuing delay of each task in a latency criti-
cal query, as well as the PCI-e bandwidth contention that affects data transfer rate
between host memory and accelerator memory.

Because key factors such as the task execution order and PCI-e bandwidth con-
tention may change during runtime, an offline solution is not adequate. A runtime
system, Baymax, that can dynamically monitor the accelerator and PCI-e bus, and
schedule tasks accordingly is needed to maximize accelerator utilization while sat-
isfying QoS of latency critical applications. Baymax composes of two parts: a task
duration predictor and a task scheduling engine. The task duration predictor lever-
ages novel models to predict the duration of tasks across different inputs. The task
scheduling engine then intercepts and analyzes task launching function calls before
passing control to the accelerator. Based on the precisely predicted task duration,
Baymax schedules compute tasks issued to the accelerator. Meanwhile, Baymax
limits the number of concurrent active data transfer tasks to mitigate PCI-e band-
width contention. By scheduling tasks and managing PCI-e bandwidth, Baymax
guarantees that QoS of latency critical applications is always satisfied regardless of
the order of tasks issued by applications.

8.11.1 Chapter Highlights

The following highlights of this chapter could be of your interest:

1. Design of a task scheduling mechanism to manage accelerator tasks—We
design a task scheduling mechanism that intercepts and schedule task invocations
from co-located applications.

2. Comprehensive analysis of QoS violation on non-preemptive accelerators—
We identify four key factors that significantly affect the end-to-end latency of
latency critical applications when they are co-located with other applications.
The analysis motivates the design of a task scheduling system based on precisely
predicted task duration for accelerator co-locations.

3. Design of online task duration prediction models–We establish accurate and
low-overhead models to estimate the duration of tasks on accelerators.

4. Design of an online mechanism to mitigate PCI-e bandwidth contention—
We design a mechanism that monitors the realtime data transfer pressure on PCI-e
bus and mitigates PCI-e bandwidth contention to eliminate QoS violation.

We implement Baymax runtime system combining all the above techniques. Bay-
max enables precise kernel duration prediction, QoS aware kernel scheduling, and
PCI-e bandwidth contention aware data transfer management. Through evaluating
Baymax with emerging latency critical workloads, we demonstrate the effective-
ness of Baymax in eliminating QoS violation due to kernel interference and PCI-e
bandwidth contention. Beyond the pair-wise co-locations, Baymax can improve the
accelerator utilization by 87.4% without violating the QoS of 99%-ile latency for
latency critical applications.

www.manaraa.com

230 8 QoS-Aware Task Reordering for Accelerators

References

1. Alex Goldhammer and John Ayer Jr. Understanding Performance of PCI Express Systems.
Xilinx WP350, Sept, 4, 2008.

2. Andrew Putnam, Adrian M Caulfield, Eric S Chung, Derek Chiou, Kypros Constantinides,
John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Gopi Prashanth Gopal, Jordan Gray, et al.
A Reconfigurable Fabric for Accelerating Large-scale Datacenter Services. In the 41st Inter-
national Symposium on Computer Architecture (ISCA), pages 13–24. ACM/IEEE, 2014.

3. Sunil Arya, David M Mount, Nathan S Netanyahu, Ruth Silverman, and Angela Y Wu. An
Optimal Algorithm for Approximate Nearest Neighbor Searching Fixed Dimensions. Journal
of the ACM, 45(6):891–923, 1998.

4. Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A Library for Support Vector Machines. ACM
Transactions on Intelligent Systems and Technology, 2(3):27, 2011.

5. Q. Chen, H. Yang, J. Mars, and L. Tang. Baymax: QoS Awareness and Increased Utilization for
Non-Preemptive Accelerators in Warehouse Scale Computers. In the Twenty-First International
Conference on Architectural Support for Programming Languages and Operating Systems,
pages 681–696. ACM, 2016.

6. CUDA Nvidia. cuBLAS library. Nvidia Corporation, Santa Clara, California, 15, 2008.
7. Cui Yu, Rui Zhang, Yaochun Huang, and Hui Xiong. High-Dimensional KNN Joins with

Incremental Updates. Geoinformatica, 14(1):55–82, 2010.
8. David Kirk et al. Nvidia CUDA Software and GPU Parallel Computing Architecture. In the 6th

International Symposium on Memory Management (ISMM), volume 7, pages 103–104. ACM,
2007.

9. Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An Introduction to Sta-
tistical Learning. Springer, 2013.

10. George AF Seber and Alan J Lee. Linear Regression Analysis, volume 936. John Wiley &
Sons, 2012.

11. A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. Dominant
resource fairness: Fair allocation of multiple resource types. In NSDI, 2011.

12. Glenn Elliott, Bryan C Ward, and James H Anderson. GPUSync: A Framework for Real-time
GPU Management. In the 34th Real-Time Systems Symposium, pages 33–44. IEEE, 2013.

13. Glenn A Elliott and James H Anderson. Globally Scheduled Real-time Multiprocessor Systems
with GPUs. Real-Time Systems, 48(1):34–74, 2012.

14. Haeseung Lee, Al Faruque, and Mohammad Abdullah. GPU-EvR: Run-time Event based Real-
time Scheduling Framework on GPGPU Platform. In Design, Automation and Test in Europe
Conference and Exhibition (DATE), pages 1–6. IEEE, 2014.

15. Ivan Tanasic, Isaac Gelado, Javier Cabezas, Alex Ramirez, Nacho Navarro, and Mateo Valero.
Enabling Preemptive Multiprogramming on GPUs. In the 41st International Symposium on
Computer Architecuture (ISCA), pages 193–204. ACM/IEEE, 2014.

16. Jason Jong Kyu Park, Yongjun Park, and Scott Mahlke. Chimera: Collaborative Preemption
for Multitasking on a Shared GPU. In International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS), pages 593–606. ACM, 2015.

17. Jeffrey Dean and Luiz André Barroso. The Tail at Scale. Communications of the ACM,
56(2):74–80, 2013.

18. Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li, Austin Rovinski, Arjun
Khurana, Ron Dreslinski, Trevor Mudge, Vinicius Petrucci, Lingjia Tang, and Jason Mars.
Sirius: An Open End-to-End Voice and Vision Personal Assistant and Its Implications for
Future Warehouse Scale Computers. In the 20th International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS). ACM, 2015.

19. Johann Hauswald, Yiping Kang, Michael A. Laurenzano, Quan Chen, Cheng Li, Ronald Dres-
linski, Trevor Mudge, Jason Mars, and Lingjia Tang. DjiNN and Tonic: DNN as a Service
and Its Implications for Future Warehouse Scale Computers. In the 42nd Annual International
Symposium on Computer Architecture (ISCA), pages 27–40. ACM/IEEE, 2015.

www.manaraa.com

References 231

20. Kittisak Sajjapongse, Xiang Wang, and Michela Becchi. A Preemption-based Runtime to
Efficiently Schedule Multi-process Applications on Heterogeneous Clusters with GPUs. In
the 22nd International Symposium on High-performance Parallel and Distributed Computing
(HPDC), pages 179–190. ACM, 2013.

21. Luiz André Barroso, Jimmy Clidaras, and Urs Hölzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Synthesis Lectures on Computer
Architecture, 8(3):1–154, 2013.

22. Nicola Jones. The Learning Machines, 2014.
23. Nvidia Multi-Process Service. https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_

Service_Overview.pdf.
24. Pedro Aguilera, Katherine Morrow, and Nam Sung Kim. QoS-aware Dynamic Resource Allo-

cation for Spatial-multitasking GPUs. In the 19th Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 726–731. IEEE, 2014.

25. Ping Xiang, Yi Yang, and Huiyang Zhou. Warp-level Divergence in GPUs: Characterization,
Impact, and Mitigation. In the 20th International Symposium on High Performance Computer
Architecture (HPCA), pages 284–295. IEEE, 2014.

26. Profiler User’s Guide. http://docs.nvidia.com/cuda/profiler-users-guide.
27. Sergio Barrachina, Maribel Castillo, Francisco D Igual, Rafael Mayo, and Enrique S Quintana-

Orti. Evaluation and Tuning of the Level 3 cuBLAS for Graphics Processors. In International
Parallel and Distributed Processing Symposium (IPDPS), pages 1–8. IEEE, 2008.

28. Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran,
Bryan Catanzaro, and Evan Shelhamer. cuDNN: Efficient Primitives for Deep Learning.
arXiv:1410.0759, 2014.

29. Shinpei Kato, Karthik Lakshmanan, Raj Rajkumar, and Yutaka Ishikawa. TimeGraph: GPU
Scheduling for Real-time Multi-tasking Environments. In USENIX Annual Technical Confer-
ence (ATC), pages 17–30. USENIX, 2011.

30. Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan, Jeremy W Sheaffer, Sang-Ha Lee,
and Kevin Skadron. Rodinia: A Benchmark Suite for Heterogeneous Computing. In IEEE
International Symposium on Workload Characterization (IISWC), pages 44–54. IEEE, 2009.

31. Vincent Garcia, Eric Debreuve, and Michel Barlaud. Fast K Nearest Neighbor Search using
GPU. In Conference on Computer Vision and Pattern RecognitionWorkshops (CVPRW), pages
1–6. IEEE, 2008.

32. Vinicius Petrucci, Michael Laurenzano, John Doherty, Yunqi Zhang, Daniel Mosse, Jason Mars,
and Lingjia Tang. Octopus-Man: QoS-driven Task Management for Heterogeneous Multicores
in Warehouse-Scale Computers. In the 21st International Symposium on High Performance
Computer Architecture (HPCA), pages 246–258. IEEE, 2015.

33. Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo. Quality of service support
for fine-grained sharing on gpus. In Proceedings of the 44th Annual International Symposium
on Computer Architecture, pages 269–281. ACM, 2017.

34. Z. Wang, J. Yang, R. Melhem, B. Childers, Y. Zhang, and M. Guo. Simultaneous multiker-
nel gpu: Multi-tasking throughput processors via fine-grained sharing. In High Performance
Computer Architecture, 2016 IEEE International Symposium on, pages 358–369. IEEE, 2016.

https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
https://docs.nvidia.com/deploy/pdf/CUDA_Multi_Process_Service_Overview.pdf
http://docs.nvidia.com/cuda/profiler-users-guide
http://arxiv.org/abs/1410.0759

www.manaraa.com

Part III
Summary and Discussion

www.manaraa.com

Chapter 9
Summary and Discussion

Abstract In this chapter, we first introduce the guideline of designing the new
task scheduling policies. Then, we give our perspectives on developing efficient and
effective task scheduling techniques on various complex parallel architecture.

9.1 Guideline of Scheduling Technique Design

In this book, we have discussed emerging techniques used to improve the perfor-
mance of task-based applications on various complex parallel architecture, such as
MSMC architecture, NUMA-enabled architecture, AMC architecture, CPU+GPU
heterogeneous architecture, heterogeneous Cloud, and Accelerators. As we can see
from this book, different techniques are used for different parallel architectures.
There is not an universal optimal technique that fits all the emerging parallel archi-
tectures. When a new parallel architecture is released, in order to achieve the best
performance, we suggest to tune existing task scheduling techniques for the specific
architecture accordingly.

In more detail, if a new parallel architecture is released, we suggest readers design
new task scheduling techniques following three steps as follows.

1. Understand the hardware features of the architecture.
2. Based on the hardware features, we can identify the potential bottlenecks in the

target architecture.
3. Modify existing task scheduling technique or develop a new task scheduling

technique that attacks the bottlenecks which often result in the poor performance
of parallel applications on the architecture.

In the following of this chapter, we introduce how we develop the task scheduling
techniques for emerging parallel architectures following the above steps.

© Springer Nature Singapore Pte Ltd. 2017
Q. Chen and M. Guo, Task Scheduling for Multi-core and Parallel Architectures,
https://doi.org/10.1007/978-981-10-6238-4_9

235

www.manaraa.com

236 9 Summary and Discussion

9.2 Multi-socket Architecture

Following to the above three steps, let us first understand the hardware features of
MSMC architecture. Compared with traditional single-socket multi-core architec-
ture, the key feature of MSMC architecture is that the cores in the same socket share
the last level cache, but cores in different sockets only shared the main memory.With
this new feature, it is beneficial if a core reads the data into the shared cache while
other cores in the same socket access the data as well.

Then, according to the above analysis, the potential bottleneck of MSMC archi-
tecture is the poor utilization of shared cache if tasks are scheduled randomly. With
random scheduling, cores in the same socket often perform on different data, thus
the data stored in the shared cache is not able to be reused. In this case, parallel appli-
cations, especially data-intensive applications, suffer from low performance due to
the poor shared cache utilization.

Therefore, theCAB task scheduler inChap. 3 attacks the poor shared cache utiliza-
tion in multi-socket architecture. By improving the shared cache utilization through
cache friendly task graph partition and bi-tierwork-stealing policy, CABsignificantly
improve the performance of data-intensive applications on multi-socket architecture
as shown in Sect. 3.8.

Although CAB is able to improve the performance of many data-intensive appli-
cations, it is still not perfect. For instance, it assumes neighbor tasks in the task graph
share some data. Althoughmany regular parallel applications follows the assumption
but some other irregular parallel applications such as graph applications do not fol-
low the assumption. It is still open to develop efficient and effective task scheduling
technique for applications with irregular data access pattern on multi-socket archi-
tecture.

9.3 NUMA-Enabled Multi-socket Architecture

Compared with traditional multi-socket architecture, the key feature of NUMA-
enabled multi-socket architecture is that the main memory is divided into memory
nodes and each memory node is attached with a CPU socket. It is much faster for the
cores in a socket to access data stored in its local memory node than remote memory
nodes. With this new feature, it is beneficial if a core can already find the required
from the local memory node instead of slower remote memory nodes.

According to the above analysis, besides the low shared cache utilization, another
potential bottleneck of NUMA-enabled multi-core architecture is the large amount
of remote memory accesses. With random task scheduling, a task is highly possible
to be schedule to the socket where it has to access data from remote memory nodes.
In this case, parallel applications, especially data-intensive applications, suffer from
low performance due to the severe remote memory accesses.

http://dx.doi.org/10.1007/978-981-10-6238-4_3
http://dx.doi.org/10.1007/978-981-10-6238-4_3

www.manaraa.com

9.3 NUMA-Enabled Multi-socket Architecture 237

Therefore, the LAWS task scheduler in Chap.4 attacks both the poor shared
cache utilization and low local memory accesses in NUMA-enabled multi-socket
architecture. By improving the shared cache utilization and increasing local memory
accesses through load-balanced data allocation, cache friendly task graph partition
and triple-level work-stealing policy, LAWS significantly improve the performance
of data-intensive applications onNUMA-enabledmulti-socket architecture as shown
in Sect. 4.10.

Although LAWS is able to improve the performance ofmany data-intensive appli-
cations on NUMA-enabled multi-socket architecture, it is not applicable for all the
applications. For instance, it assumes each task in an application only processes a
small portion of the whole dataset of the application. Although many regular parallel
applications follows the assumption but some other irregular parallel applications
such as graph applications do not follow the assumption. It is still open to develop
efficient and effective task scheduling technique for applications with irregular data
access pattern on NUMA-enabled multi-socket architecture.

9.4 Asymmetric Multi-core Architecture

Compared with traditional multi-socket architecture, the key feature of asymmetric
multi-core architecture is that individual cores have different computational capa-
bilities. With this new feature, it is beneficial to balance the workload across the
asymmetric cores.

According to the feature of asymmetric multi-core architecture, the potential bot-
tleneck of parallel applications on AMC architecture is the poor load balance. With
traditional random task scheduling, it is highly possible that a long task is allocated
to a slow core while a short task is allocated to a fast core. The example in Sect. 5.2
has shown that random task scheduling degrades the overall performance seriously.

Therefore, the AATS task scheduler in Chap.5 attacks the poor load balanc-
ing problem in asymmetric multi-socket architecture. By perfectly balancing the
workload through history-based task allocation and preference-based work-stealing,
AATS significantly improve the performance of compute-intensive applications on
asymmetric multi-socket architecture as shown in Sect. 5.10.

Although AATS is able to improve the performance of some compute-intensive
applications, it is still not perfect. It assumes that tasks executing the same function
in the current run have similar workloads. This assumption is not obeyed by all the
applications. For instance, if all the tasks execute the same function but operate on
data of different sizes, they have totally different workloads but are classified into
the same task class in AATS. In this case, AATS operates the same as traditional
random task scheduling and is not able to further balance the workload.

In addition, if there are dependencies between tasks, the history-based task allo-
cation is not working. It is still open to develop new task scheduling techniques for
more complex parallel applications on asymmetric multi-core architecture.

http://dx.doi.org/10.1007/978-981-10-6238-4_4
http://dx.doi.org/10.1007/978-981-10-6238-4_4
http://dx.doi.org/10.1007/978-981-10-6238-4_5
http://dx.doi.org/10.1007/978-981-10-6238-4_5
http://dx.doi.org/10.1007/978-981-10-6238-4_5

www.manaraa.com

238 9 Summary and Discussion

9.5 Heterogeneous CPU+GPU Architecture

Heterogeneous CPU+GPU architecture can also be viewed to be an asymmetric
architecture where CPU is slow processing element and GPU is fast processing
element. Different from the targeted single-ISA AMC architecture in Chap.5, CPU
and GPU have different ISAs. One key feature of CPU+GPU architecture is that
different applications have different speedup ratios on the GPU compared with CPU,
because the applications have various characteristics. In addition, a GPU performs
poor when a GPU kernel is too small to fully utilize all its SMs.

According to the above analysis, it is not trivial to find an universal optimal
workload allocation for all the parallel applications offline. The potential bottleneck
of CPU+GPU architecture is the poorly balancedworkload and the poor performance
of GPU due to the small workload of GPU kernels. If the workload is not balanced,
the overall performance of a parallel application is determined by the slowest side
of the CPU+GPU architecture. If fine-grained task scheduling is used to balance the
workload, GPU performs poor in this case and further results in the poor performance
as well.

Therefore, the HATS task scheduler in Chap.6 attacks the above two bottlenecks
in the heterogeneous CPU+GPU architecture. By balancing the whole workload
across CPU and GPU while maximize the task granularity through asymptotic pro-
filing, HATS significantly improve the performance of applications on CPU+GPU
architecture as shown in Sect. 6.5.

HATS task scheduler is also not perfect for heterogeneous CPU+GPU architec-
ture, because it potentially assumes that the workload of a task increases linearly
with the size of its data set. This assumption is not always correct in complex paral-
lel applications such as algorithms of sparsematrix. It is still open to develop effective
task scheduling techniques that can balance workload across CPU and GPU for real-
system complex parallel applications.

9.6 Heterogeneous Cloud Platform

The key feature of heterogeneous Cloud platform is that the nodes have different
processing speeds for map tasks and reduce tasks. Obviously, the performance of
MapReduce is often seriously damaged by a few straggler tasks that complete far
behind the other tasks in heterogeneous Cloud platform. The emerging solution of
speeding up the straggler tasks is to launch backup tasks for them on fast nodes.
However, current least progress policy used to identify straggler tasks is not able to
correctly identify the actual straggler tasks thus fails to maximize the performance
of MapReduce applications.

According to the above analysis, one of the potential bottleneck of MapReduce
applications on heterogeneousCloud platform is the in-accuracy of identifying actual
straggler tasks. In a wrong task is identified to be a straggler task, the actual straggler

http://dx.doi.org/10.1007/978-981-10-6238-4_5
http://dx.doi.org/10.1007/978-981-10-6238-4_6
http://dx.doi.org/10.1007/978-981-10-6238-4_6

www.manaraa.com

9.6 Heterogeneous Cloud Platform 239

tasks will not be speeded up and the backup task of the wrong straggler task wastes
resources. In this case, the actual straggler tasks and the wasted resources together
result in the poor performance of MapReduce applications on heterogeneous Cloud
platform.

Therefore, the SAMR scheduler in Chap.7 attacks the problem of poor accuracy
of identifying real straggler tasks. By accurately calculating the remaining time of
all the tasks leveraging the weights of different phases of a map/reduce task, SAMR
significantly improve the performance ofMap-Reduce applications onheterogeneous
Cloud architecture as shown in Sect. 7.5.

Although SAMR is able to improve the performance of manyMap-Reduce appli-
cations, it is still not perfect because straggler tasks are not the only bottleneck
of a MapReduce application on heterogeneous Cloud platform. For instance, it is
beneficial to balance the workload across heterogeneous nodes and reduce network
congestion in the Cloud platform. It is still open to develop efficient and effective
task scheduling technique for emerging MapReduce applications on heterogeneous
Cloud platform.

9.7 Non-preemptive Accelerator Architecture

Many emerging accelerators, such as GPGPU and FPGA, are non-preemptive. For
these non-preemptive accelerators, the key feature is that a newly submitted kernel is
not able to preempt the accelerator but can only start to run after the current running
kernel completes.Although the latestGPUNvidia P100 already supports preemption,
the overhead of preemption is too large to be used in real system. With this feature,
when a latency-critical application is co-located with other applications on the same
non-preemptive accelerator, the latency-critical application can be severely delayed
by the co-located applications.

According to the above analysis, the bottleneck of guaranteeing the QoS of
latency-critical applications on accelerator at co-location is the non-preemptive fea-
ture. For instance, if a long kernel of an application is running on the accelerator, all
the following kernels are delayed until the long kernel completes. In this case, the
QoS of latency-critical applications cannot be satisfied.

Therefore, the Baymax scheduler in Chap.8 attacks the QoS violation problem
of latency-critical applications at co-location on non-preemptive accelerator. By pre-
cisely predicting the duration of every kernel, reordering all the kernels accordingly,
mitigating PCI-e bandwidth contention, Baymax is able to greatly improve the accel-
erator utilizationwhile guaranteeing theQoSof latency-critical applications as shown
in Sect. 8.10.

At last, I want to emphasize again that there is no universal scheduling policy that
can work perfectly for all parallel architectures. Therefore, as parallel architectures
become increase in complexity, dynamic task scheduling techniques will need to be
optimized for their specific features in the three steps described in this chapter.

http://dx.doi.org/10.1007/978-981-10-6238-4_7
http://dx.doi.org/10.1007/978-981-10-6238-4_7
http://dx.doi.org/10.1007/978-981-10-6238-4_8
http://dx.doi.org/10.1007/978-981-10-6238-4_8

www.manaraa.com

Glossary

Shared Memory Parallel Architecture A computer architecture that consists of
multiple processing elements and themainmemory is shared by all the processing
elements.

Distributed Memory Parallel Architecture A computer architecture that con-
sists of multiple processing elements and the main memory is distributed to dif-
ferent nodes. Each processing element is only able to access part of the main
memory attached with its node.

Multi-socket Multi-core Architecture (MSMC) It is a kind of shared memory
parallel architecture, in which multiple CPU chips are integrated into a single
node and each CPU chip has multiple cores with a shared last-level cache. Each
CPU chip is plugged into a socket.

Asymmetric Multi-core Architecture (AMC) It is a kind of sharedmemory par-
allel architecture that consists of a mix of fast cores and slow cores.

GPGPU General Purpose GPU that can be used to process general applications
besides graph applications.

IPC Instruction-Per-Cycle. It is used to measure the processing speed of an appli-
cation on a computer.

Makespan The actual time of processing an parallel application (From the time
that the application is launched to the time that the application terminates).

SM Streaming Multiprocessor in GPGPU.
Manual Task Scheduling Tasks are scheduled by programmersmanually in order

to balance the workload between threads/processes for the good performance.
Automatic Task Scheduling Tasks are scheduled automatically at runtime in or-

der to balance the workload between threads/processes for the good performance.
TRICI Task relocation incurred cache interference problem.
Cache-Aware Scheduling Schedule tasks when considering the impact from

cache usage.
Locality-Aware Scheduling Schedule tasks when considering where the data of

a task is stored.
Task Graph The execution of a task-based parallel application can be expressed

to be the traversal of a task graph, which is a Directed Acyclic Graph (DAG).

© Springer Nature Singapore Pte Ltd. 2017
Q. Chen and M. Guo, Task Scheduling for Multi-core and Parallel Architectures,
https://doi.org/10.1007/978-981-10-6238-4

241

www.manaraa.com

242 Glossary

In the task graph, the nodes represent the tasks and the edges correspond to the
dependence relationship among the tasks.

SOID The size of data involved by a task during its execution.
NUMA Non-UniformMemory Access. In MSMC architecture, the main memory

is divided into multiple memory nodes and each node is attached to the socket
of a chip. The memory node attached to a socket is called its local memory node
and those that are attached to other sockets are called remote memory nodes.
The cores of a socket access its local memory node much faster than the remote
memory nodes.

First touch strategy A strategy of data allocation in NUMA memory. If a chunk
of data is first accessed by a task that is running on a core of the socket ρ, a physical
page from the local memory node of ρ is automatically allocated to stored the
data.

CF subtree It is a subtree of the whole task graph of an application. The data
involved by all the tasks in the subtree is small enough to fit into the last level
cache.

Cache Miss If a core cannot find the needed data in the cache, a cache miss
happens. In this case, the core tries to access data from lower level of cache or
memory.

Local Memory Access A core read the needed data from the memory node at-
tached to its socket.

Parent-first policy It is a task generation policy in work-stealing, where a core
continually executes the parent task after spawning a new task.

Child-first policy It is a task generation policy in work-stealing, where a core
continually executes the spawned new task once the child is spawned.

Cilk2c It is the source-to-source compiler of MIT Cilk.
Straggler task/socket It is the task/socket that needs the longest time to complete

its work. It can significantly degrade the performance of a parallel application.
C-group A group of cores that operate at the same speed and have the same

performance in asymmetric multi-core architecture.
Task class A task class is comprised of a group of tasks that run the same function.
LATE policy The longest approximate time to end policy. The task that has the

longest approximate time to its end is considered to be the straggler task.
Speculative Execution With speculative execution, if amap/reduce task is consid-

ered to be the straggler task, the system launches a backup of the map/reduce task
speculatively on a fast node. Either the original task or the backup task completes,
the task is considered to be complete successfully.

Preemptive A hardware (e.g., CPU, GPU, FPGA) is preemptive when a newly
submitted task t can stop the currently running task and preempts the hardware.
Similarly, a hardware is non-preemptive if a task can use the hardware only when
the current task running on the hardware completes.

QoS Quality-of-Service (QoS) is an advanced feature that prioritizes one applica-
tion to minimize the cases that the application completes after the deadline.

MPS MPS (Multi-Process Service) scheduling is a technique proposed by Nvidia
that enables concurrent sharing of a GPU among multiple applications.

www.manaraa.com

Glossary 243

Memcpy Copy data between the main memory and the global memory of the
accelerator through PCIe bus.

ANN It is amachine learning algorithm called ApproximateNearest Neighbor .
KNN It is a machine learning algorithm called K − Nearest Neighbor . K is an

integer configured by the user.

	Preface
	Part I: Background
	Part II: Task Scheduling for Various Parallel Architectures
	Part III: Summary and Perspectives

	Acknowledgements
	Contents
	Acronyms
	Part I Background
	1 Emerging Parallel Architectures
	1.1 Parallel Architecture is Dominating the World
	1.2 Shared Memory Parallel Architecture
	1.2.1 Multi-core Architecture
	1.2.2 Multi-socket Multi-core Architecture
	1.2.3 Asymmetric Multi-core Architecture

	1.3 Distributed Memory Parallel Architecture
	1.3.1 Tight-Coupled Distributed Memory Architecture
	1.3.2 Loose-Coupled Distributed Memory Architecture

	1.4 Accelerator
	1.4.1 GPGPU
	1.4.2 Intel Xeon Phi

	1.5 Heterogeneous Parallel Architecture
	1.6 Chapter Highlights
	References

	2 Conventional Task Scheduling Policies
	2.1 Manual Task Scheduling Policies
	2.1.1 Message Passing
	2.1.2 Multi-threading

	2.2 Automatic Task Scheduling Policies
	2.2.1 Task Scheduling Policies for Data Parallelism
	2.2.2 Task Scheduling Policies for Task Parallelism

	2.3 Parallel Programming Environments
	2.3.1 Programming Environments for Data Parallelism
	2.3.2 Programming Environments for Task Parallelism

	2.4 Problems in Existing Task Scheduling Systems
	2.5 Chapter Highlights
	References

	Part II Optimized Task Scheduling for Parallel Architectures
	3 Work-Stealing for Multi-socket Architecture
	3.1 Background and Existing Problems
	3.1.1 The TRICI Problem

	3.2 Prior Solutions
	3.2.1 Scalable Locality-Aware Adaptive Work-Stealing (SLAW)
	3.2.2 Multi-Threaded Shepherds (MTS)
	3.2.3 Probability Work-Stealing (PWS)
	3.2.4 Hierarchical Work-Stealing (HWS)
	3.2.5 CONTROLLED-PDF

	3.3 Cache-Aware Bi-tier Work-Stealing
	3.3.1 Solution Overview
	3.3.2 Design Overview

	3.4 Cache-Aware Task Graph Partition Policy
	3.4.1 Full Tree Oriented Partition Policy
	3.4.2 General Tree Oriented Partition Policy

	3.5 Bi-tier Work-Stealing Scheduling Policy
	3.5.1 Work Stealing Algorithm
	3.5.2 Task Generating Algorithm

	3.6 Theoretical Time and Space Bounds
	3.6.1 Theoretical Bounds for Random Work-Stealing
	3.6.2 Theoretical Bounds for CAB

	3.7 Implementation Methodology
	3.7.1 Compiler Support
	3.7.2 Runtime Support

	3.8 Evaluation of CAB
	3.8.1 Performance of CAB-FTO
	3.8.2 Performance of CAB-GTO

	3.9 Summary
	3.9.1 Chapter Highlights

	References

	4 Work-Stealing for NUMA-enabled Architecture
	4.1 Chapter Organization
	4.2 Background and Existing Problems
	4.3 Prior Solutions
	4.3.1 Random Pushing
	4.3.2 Cluster-Aware Hierarchical Stealing (CHS)
	4.3.3 Cluster-Aware Load-Based Stealing (CLS)
	4.3.4 Cluster-Aware Random Stealing (CRS)
	4.3.5 TATL
	4.3.6 NUMALB
	4.3.7 Offline Technique for Unstructured Parallelism

	4.4 Design of Locality-Aware Work-Stealing
	4.5 Load-Balanced Task Allocator
	4.6 Cache-Friendly Task Graph Partitioner
	4.6.1 Decide the Initial Partitioning
	4.6.2 Search for the Optimal Partitioning

	4.7 Triple-Level Work-Stealing Policy
	4.8 Theoretical Validation
	4.9 Implementation Methodology
	4.10 Performance Evaluation of LAWS
	4.10.1 Experimental Platforms
	4.10.2 Performance of LAWS
	4.10.3 Effectiveness of Cache-Friendly Task Graph Partitioner
	4.10.4 Scalability of LAWS
	4.10.5 Overhead of LAWS
	4.10.6 Applicability of LAWS

	4.11 Summary
	4.11.1 Chapter Highlights

	References

	5 Dynamic Load Balancing for Asymmetric Multi-core Architecture
	5.1 Chapter Organization
	5.2 Problem Formulation
	5.3 Existing Solutions
	5.3.1 Task Snatching Technique
	5.3.2 CAMP
	5.3.3 Bias Scheduling
	5.3.4 Age-Based Scheduling
	5.3.5 Speed-Based Balancing
	5.3.6 Scheduling on AMC with Hardware Support

	5.4 Theoretical Ideal Task Scheduling
	5.5 A Practical Polynomial Time Solution
	5.6 Design of Asymmetric-Aware Task Scheduling
	5.6.1 Processing Flow of AATS

	5.7 History-Based Task Allocation
	5.7.1 Build Task Classes
	5.7.2 Allocate Task Classes to C-Groups

	5.8 Preference-Based Work-Stealing
	5.8.1 Scheduling Within a C-Group
	5.8.2 Scheduling Among C-Groups

	5.9 Implementation Methodology of AATS
	5.10 Performance of AATS
	5.10.1 Experimental Configurations
	5.10.2 Performance on Emulated Platform
	5.10.3 Effectiveness of the Preference-Based Work-Stealing
	5.10.4 Scalability of AATS
	5.10.5 Integrating Task-Snatching in AATS

	5.11 Summary
	5.11.1 Chapter Highlights

	References

	6 Load Balancing for Heterogeneous Parallel Architecture
	6.1 Background and Existing Problems
	6.2 Prior Solutions
	6.2.1 Static Scheduling
	6.2.2 Quick Scheduling
	6.2.3 Split Scheduling
	6.2.4 FinePar

	6.3 Heterogeneous-Aware Task Scheduling
	6.4 Comparison of the Scheduling Policies
	6.5 Performance of Dynamic Scheduling Policies
	6.5.1 Experimental Setup
	6.5.2 Performance
	6.5.3 Effectiveness of Balancing Workload
	6.5.4 Effectiveness of Predicting the Performance of GPU
	6.5.5 Impact of Profiling Granularity

	6.6 Summary
	6.6.1 Chapter Highlights

	References

	7 MapReduce for Cloud Computing
	7.1 Introduction to MapReduce
	7.1.1 Scheduling Policy in MapReduce
	7.1.2 Adapting to Other Platforms
	7.1.3 Variations of MapReduce
	7.1.4 Existing Problem in Heterogeneous Environment

	7.2 Prior Solutions
	7.2.1 Least Progress Policy
	7.2.2 Longest Approximate Time to End Policy
	7.2.3 Calculating Progress Score
	7.2.4 Problems in Existing Solutions
	7.2.5 Tarazu

	7.3 Self-adaptive MapReduce Scheduling
	7.3.1 Overview of SAMR
	7.3.2 Tuning Phase Weights
	7.3.3 Calculating Progress Score
	7.3.4 Identifying Straggler Task
	7.3.5 Identifying Slow Node
	7.3.6 Boosting Straggler Task

	7.4 Implementation of SAMR
	7.5 Performance Evaluation
	7.5.1 Experimental Setup
	7.5.2 Performance
	7.5.3 Effectiveness of Speculative Execution and Weight Tuning
	7.5.4 Parameter Selection in SAMR

	7.6 Summary
	7.6.1 Chapter Highlights

	References

	8 QoS-Aware Task Reordering for Accelerators
	8.1 Background and Existing Problems
	8.2 Prior Work on Handling Accelerator Co-location
	8.2.1 TimeGraph
	8.2.2 GPU-EvR
	8.2.3 Simultaneous Multi-kernel (SMK)
	8.2.4 GPU Thread Preemption

	8.3 Real System Investigation on Accelerator Co-location
	8.4 Investigation on Priority-Based Scheduling Policy
	8.5 Design of Task Scheduling Mechanism on Accelerators
	8.6 Case Study: QoS-Aware Task Scheduling on Accelerator
	8.6.1 Root Causes of Long Tail Latency at Co-location
	8.6.2 Design of Baymax

	8.7 Task Duration Modeling in Baymax
	8.7.1 Task Duration Predictor
	8.7.2 Selecting Representative Features
	8.7.3 Low Overhead Prediction Models
	8.7.4 Minimizing Prediction Error
	8.7.5 Prediction Accuracy

	8.8 Scheduling Hand-Written Kernels and Library Calls
	8.8.1 Breaking down the End-to-end Latency
	8.8.2 Scheduling Policy

	8.9 Scheduling Data Transfer Tasks
	8.9.1 Characterizing PCI-e Bandwidth Contention
	8.9.2 Scheduling Policy

	8.10 Performance of Baymax
	8.10.1 Experimental Configuration
	8.10.2 QoS and Throughput
	8.10.3 Scheduling Data Transfer Tasks
	8.10.4 Beyond Pair-Wise Co-locations

	8.11 Summary
	8.11.1 Chapter Highlights

	References

	Part III Summary and Discussion
	9 Summary and Discussion
	9.1 Guideline of Scheduling Technique Design
	9.2 Multi-socket Architecture
	9.3 NUMA-Enabled Multi-socket Architecture
	9.4 Asymmetric Multi-core Architecture
	9.5 Heterogeneous CPU+GPU Architecture
	9.6 Heterogeneous Cloud Platform
	9.7 Non-preemptive Accelerator Architecture

	Glossary

